
  

  

Abstract—Pancreatic cancer is the fourth leading cause of 
cancer death in the United States. Consequently, identification 
of clinically relevant biomarkers for the early detection of this 
cancer type is urgently needed. In recent years, proteomics 
profiling techniques combined with various data analysis 
methods have been successfully used to gain critical insights 
into processes and mechanisms underlying pathologic 
conditions, particularly as they relate to cancer.  

The LOCCANDIA (Lab-On-Chip based protein profiling for 
CANcer DIAgnosis) project is primarily concerned with 
validating the application of plasma protein profiling for early 
pancreatic cancer diagnosis by means of developing an 
innovative nano-technology based (lab-on-a-chip) platform 
integrated in a full proteomics analysis chain. 

This paper describes the integrated clinico-proteomic 
information management and analysis platform. In particular 
it focuses on discussing the underlying methodologies and 
technological aspects of key SW modules, i.e. the data 
preprocessing and profile reconstruction as well as the 
classification modules.  

I. INTRODUCTION 
The human plasma proteome holds the promise of a 

revolution in disease diagnosis and therapeutic monitoring. 
The plasma protein analysis aims to characterize the 
proteomic status of cells and in particular to define the 
degree of their disorder according to their expression level 
pattern. This is in particular highly relevant to the effort that 
has been done in associating specific protein marker levels 
in patients’ blood with the different cancer stages. One 
major breakthrough comes from the utilization of multi-
protein disease markers instead of single protein analytes 
and the detection of all the isoforms of the selected proteins.  

Gastric cancers, such as pancreatic cancers, are among the 
most frequently observed severe diseases in developed 
countries [1]. These types of cancers are detected by 
expensive diagnostic imaging methods at a late stage 
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resulting in poor prognosis and high mortality rate since the 
only effective therapy is an early resection of the tumors.  

Since the clinical manifestations of pancreatic cancer, 
except obstructive jaundice, are often not apparent until the 
advanced stages of the disease, and the anatomical location 
of the pancreas deep in the abdomen makes physical and 
ultrasonic detection of pancreatic cancer difficult, about 
95% of all cases are diagnosed in stage III or IV, and the 5-
year survival rate of pancreatic cancer patients is the lowest 
among patients with common solid tumors.  

Human blood serum and plasma contain a large variety of 
proteins, and their relative abundance and modification may 
precisely reflect the disease status of organs and tissues. 
Recent advances in MS-based proteomic technologies 
coupled with bioinformatics may revolutionize medical 
diagnosis and cancer screening. Mass spectrometry 
approaches [2] are very attractive to detect protein panels 
and protein isoforms in a sensitive way. However, the 
application to clinical diagnosis is still at its beginning [3]. 
The need for new and relatively simple devices to allow for 
the translation of these research results to clinical practice is 
urgent. 

The LOCCANDIA (Lab-On-Chip based protein profiling 
for CANcer DIAgnosis) project is primarily concerned with 
validating the application of plasma protein profiling for 
early pancreatic cancer diagnosis by means of developing an 
innovative nano-technology based (lab-on-a-chip) platform 
integrated in a full proteomics analysis chain [4]. 

This paper describes the integrated clinico-proteomic 
information management and analysis platform. In particular 
it focuses on discussing the underlying methodologies and 
technological aspects of the integrated modules, i.e. the data 
preprocessing and profile reconstruction and the 
classification modules.  

II. INFORMATION MODELING 
The LOCCANDIA project integrates a full proteomic 

analysis chain, from blood sample to diagnostic information, 
combining bio, nano and information related technologies 
(fig. 1). 

The BIO part of the analysis chain gets as input blood 
sample, and provides the NANO part with a selected protein 
mixture that will be further analyzed. NANO is the part 
related to Lab-on-Chip and Mass Spectrometry. This part is 
divided in several modules; target protein mixture treatment, 
digestion, liquid chromatography, electrospray ionization, 
and mass spectrometry. The INFO part is related to the 
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supporting information technology infrastructure and is 
utilized through the LOCCANDIA Information 
Management System (LIMS). LIMS is responsible for 
documenting real life events and processing primary 
information assets for knowledge discovery.  

 

 
Fig. 1. The LOCCANDIA diagnostic analysis chain 
 

Past experience has shown that multivariate analyses (as 
proteomics generally is) require an enormous wealth of data. 
This requires the design and implementation of a 
“proteomics database”, which must adhere to strict rules 
ensuring the desired clarity and quality. Therefore such a 
database was designed and developed, by building on the 
outputs of existing standardization initiatives.   

One of the fundamental requirements, arising from the 
discussion above, is that of integration of information across 
multiple information domains, one of genomics/proteomics 
research and the other of clinical practice. Building on such 
a requirements base, a proteomic information management 
workflow involves collecting, indexing, searching, and 
analyzing data generated from a wide variety of instrument, 
robotics, and software platforms. In order to automate this 
process, the solution must support third-party integration, 
management, and reporting in a consistent, logical manner. 

LIMS has been designed with the following high-level 
goals in mind; scalability, availability, performance, 
security, extensibility and modularity.   

A major challenge in the systematic capture of protein 
expression data is the diversity of experimental technologies 
and data formats in the field. Various XML (eXtensible 
Markup Language) standards for proteomics have been 
developed in order to facilitate the capture, analysis, and 
distribution of proteomics data. mzXML [5], [6] is a XML  
based common file format for proteomics mass 
spectrometric data. The intent of mzXML is to encapsulate 
unprocessed, raw peak lists. Therefore, mzXML is the data 
format used as a data input on the profile reconstruction 
module. 

III. LIMS PLATFORM 
The LOCCANDIA Information Management System 

(LIMS) is a web-based application, responsible for the 
storage, examination and manipulation of clinical and 
proteomic data. LIMS acts as a mediation platform for the 
integration and data exchange between several data analysis 
tools. Its ultimate objective is to intelligently correlate 

clinical and proteomic information towards LOCCANDIA’s 
goal of early pancreatic cancer diagnosis [7].  

During the project’s initial phases it was decided to 
employ a user-driven iterative and incremental development 
(IID) [8]. Each iteration should be a self-contained mini-
project composed of activities such as requirements analysis, 
design, programming, and test. Likewise, test-driven 
development techniques [9] were adopted in order to 
achieve the desired improvement and functionality of the 
system. 

LIMS was designed and developed using the “three-tier” 
client-server software architecture. The application uses an 
authorization security mechanism for user authentication. 
The web-based graphical user interface consists of a large 
number of view tables and input forms, used for data view 
and manipulation (fig.2). 
 

 
Fig. 2 LIMS clinic-proteomic platform 

IV. DATA PREPROCESSING AND PROFILE RECONSTRUCTION 

A. Module Description 
This module estimates the concentration of the unknown 

proteins [10]. Its functionalities can be divided in two major 
operations. Data pre-processing, which is responsible for 
correcting the time shifts between the experiments and 
profile reconstruction that is applied in order to quantify the 
proteins. 

The objective of the proteomic profile reconstruction task 
is to develop the methodology and the signal reconstruction 
software to recover quantitative molecular concentration 
profiles from the raw measurements, and to evaluate the 
results on both synthetic and experimental data.  

To compensate for systematic differences due to sample 
loadings and instrument errors, raw proteomics data have to 
be pre-processed before any feature selection method and 
classification algorithm can be applied. Three major pre-
processing procedures were applied to our dataset: baseline 
adjustment, normalization and kernel smoothing (see fig 3). 

Pre-processing is initially applied, as it standardizes data 
and corrects the time delay in retention time among 
spectrograms [11]. To achieve that a block matching 
algorithm has been implemented. Contrary to classical 
correction algorithms, block matching does not use Dynamic 



  

Time Warping and thus is not restricted to 1D signal. In fact 
the proposed method adopts the usual translational motion 
models and is applied on Liquid Chromatography-Mass 
Spectrometry “images”. 
 

 
Fig. 3. Computational chain for the profile pre-processing & reconstruction 
 

The Profile reconstruction SW module is developed 
iteratively in two versions. The first version is based on the 
inverse problem approach and relies on developing a 
functional model that associates the concentration profile of 
the unknown molecular with the measurements of the 
spectrograms. Unlike other commonly used approaches, it is 
based on chemometric methods [12] and thus has the 
advantage of increasing the sensitivity and robustness to 
noise and perturbations as it takes into account the whole 
signal. The second version will introduce physical and 
chemical parameterization of the system. 

Currently, version 1 (V1) of the reconstruction module has 
been automated and incorporated into the LIMS, while 
version 2 (V2) is under development at CEA LETI. The 
following section provides detailed information on the 
implementation of version 1. 

B. Module Input/Output 
The profile reconstruction module and pre-processing is a 

MATLAB script that runs in the MATLAB environment. 
The MATLAB code includes the following steps: 
– Pre-processing ( common for V1, V2): 

• Conversion of mzXML 
• Interpolation (in mass over charge for QTOF 

and retention time for LIT) 
• Time shift correction between the various 

experiments 
• Data smoothing (to remove some noise) 

– Profile reconstruction (V1) with various chemometrics 
methods.  

The LIMS interface only needs to call one MATLAB 
function “recons_V1”. The entire steps have been 
automated. 
The function input arguments are: 
– Type of mass spectrometer (‘LIT’ or ‘QTOF’). 
– Targeted protein concentration in the calibration 

mixtures.  
– Mass over charge ratio of targeted peptides (+/- delta).  
– Retention time of targeted peptides (+/- delta). 
– Over load in mass of tagged peptide. 

– Tagged protein concentration in all the mixtures.  
– Experimental files (calibration files followed by 

prediction files). 
The function output arguments are: 

– Estimated concentrations of the targeted proteins in 
the prediction files with the 4 different methods of 
V1 (CLS, PLS, N-PLS, PARAFAC). 

C. Version 1: Non-parametric and linear (chemometrics 
approach) 

The chemometrics approach is used for V1 of the 
reconstruction algorithm. In literature, chemometrics 
techniques correspond to black box model based approach. 
The aim is to extract the relevant information of 
physicochemical measured data based on the construction 
and the exploitation of a multivariable model.  
 Chemometrics techniques model variations of a given 
number of variables, called Xvariables for which the 
estimate is delicate (in our case, proteins concentration), in 
function of others variables, called Yvariables, easily 
measurable (2D spectrograms). 

Two operations are necessary: 
– Calibration step realizes the computation of the model C. 

This procedure is done off-line. At this step, the 
Xvariables and the Yvariables are known. 

– Prediction step enables to compute the Xvariables using 
the model estimated at the calibration step and the 
Yvariables. 

The implemented function uses the N-way toolbox [13] 
for MATLAB, an advanced freeware toolbox for fitting 
multi-way model. 

The following methods have been implemented:  

– CLS (Classical Least Square) 

The Classical least Square (CLS) method extends the 
application of ordinary least square as applied to a single 
independent variable. CLS method realizes the inversion of 
two matrices of low dimension. 

– PCR (Principal Component Regression) 

With analysis involving large numbers of independent 
variables, correlation often exist between the variables. Co-
linearity adds redundancy to the regression model since 
more variables than necessary are used in the model. PCR 
overcomes this problem by: (a) selecting the smallest 
number of variables necessary, (b) using the maximum of 
information contained in the independent variables and (c) 
choosing independent variables that are not highly 
correlated with each other. 

– PLS (Partial Least Square) 

The method differs from PCR by including the 
concentration variable in the data compression and 
decomposition operations (both X and Y are actively used in 
the data analysis). For this reason, PLS solution should have 
better predictive power than PCR when the calibration step 
does not involve all the components of the system. This 
serves to minimize the potential effects of Y variables 



  

having large variance but which are irrelevant to the 
calibration model.  

– N-PLS (Multiway Partial Least Square) 

N-PLS is a multiway regression method which realizes 
PLS on 2D measurements (spectrograms of 2 dimensions) 
instead of unfolding the matrix into a long-vector. 
Compared to unfolding methods, the multilinear models are 
much simpler, because they need fewer parameters and are 
preferable with regard to simplicity and stabilization of the 
decomposition. This stabilization potentially gives increased 
interpretability and better predictions. The algorithm is fast 
compared to PARAFAC, because it consists of solving 
eigenvalue problems. 

– PARAFAC (PARallel FACtor analysis) 

PARAFAC is a multiway decomposition method used in 
chemometrics. An advantage of using multiway methods 
instead of using unfolding methods is that the estimated 
models are simple, more robust and easier to interpret. 
PARAFAC decomposes the array into sets of scores and 
loading that describes the data in a more condensed form 
than the original data array. The reason for using multiway 
methods is not to obtain better fit but rather more adequate, 
robust and interpretable models. 

D. Module Integration 
Version 1 of profile reconstruction and pre-processing 

module is a MATLAB script that runs in the MATLAB 
environment. JMatLink is a Java library that allows a Java 
application or servlet to connect to MATLAB by using 
native methods. JMatLink uses a multi-threading approach 
to improve performance and handle multiple MATLAB 
sessions at a time. LIMS uses Jmatlink to call several 
MATLAB scripts, accept their output and store it into the 
database. 

The user can access the reconstruction module via the LIMS 
navigation menu. In order to invoke the reconstruction 
module a certain workflow should be followed (see fig. 4). 
Initially the user should use the provided upload mechanism 
to upload all the required mzXML files on the LIMS server. 
Following that, specific protocol and regions of interest 
(ROI) should be defined. The Protocol form is used for 
defining the different mass spectrometer devices used. 
Protein ROI form is concerned with the Regions of Interest 
(ROI) per protocol. The next step includes the assignment of 
the uploaded mzXML files to either calibration or prediction 
database entities. The calibration entity contains information 
regarding the known concentrations of the targeted proteins. 
On the other hand, prediction entities are used to associate 
the uploaded prediction mzXML files to specific samples 
stored in the clinico-proteomic part of the database. When 
the user clicks on the “Run Profile Reconstruction” link, the 
reconstruction MATLAB function is initiated.  

 

 
Fig. 4. Process flow and interface diagram 
 
The user then selects the desired prediction and calibration 
files from a list of available files to be used. By submitting 
the selected files an algorithm is used to create the 
appropriate input string for the MATLAB script. The script 
is then executed and the predicted concentration values per 
method (CLS, PLS, NPLS, PARAFAC) per prediction file 
are estimated and stored in the LIMS Database. Part of the 
integrated profile reconstruction module functionality is 
shown on fig. 5. 

 
Fig. 5. LIMS forms and interfaces 
 

V. CLASSIFICATION MODULE 

A. Specific Purpose 
At this point of the analytical chain, the time shifts 

between the experiments have been corrected, the signal has 
been reconstructed and the quantitative molecular 
concentration profiles have been recovered. The next step is 
to use those concentrations in order to characterize the 
health status of the patients with unknown health conditions. 

In achieving this, a Classification Module is used to 
predict patient outcomes discerning healthy individuals from 
pancreatic cancer patients by differentiating a given sample 



  

between two classes (pancreatic cancer and no pancreatic 
cancer). In achieving this, it applies specific algorithms to a 
set of selected proteomic and clinical data, based on modern 
statistical learning and logistic regression. In addition, 
Receiver Operating Curve (ROC) [14] analysis is performed 
for measuring the performance and the accuracy of the 
different classification methods used. 

B. Machine Learning Classification Algorithms 
Many investigators have applied proteomics technology 

and data mining methods to identify serum proteomic 
patterns that can distinguish normal from cancer samples 
[15].  

One of the major challenges for proteomic profiling is the 
analysis and mining of biologically useful information from 
the enormous dataset. Due to the high dimensionality of 
proteomics dataset and their often small sample sizes, non-
classical statistical methods for data analysis need to be 
employed. Therefore, various machine learning 
classification algorithms have been applied to proteomics 
data analysis. These include the use of decision tree [16], 
Bayesian neural network [17], self-organizing map [18], 
support vector machine [19], linear and quadratic 
discriminant analysis [20].  

The analysis and mining of proteomic information from 
large dataset had always been challenging. There are several 
machine learning classification algorithms that have been 
applied to proteomic data analysis and in some cases they 
had been limited in terms of efficient procedure and 
robustness in handling the variance inherent in the 
proteomic data [15].  

C. Classification Methods 
The classification module developed for the 

LOCCANDIA information system builds on a variety of 
classification techniques. The first family of techniques 
utilizes Support Vector Machines (SVM) [21],[22], which is 
a set of related supervised learning methods capable of 
minimizing the empirical classification error and 
maximizing the geometric margin, whereas the second one 
makes use of Logistic Regression model, that filters data to a 
logistic curve by using a number of predictor variables. 
Several methods based on SVM have been implemented, 
providing eight different kernels. These are: Linear Kernel, 
Gaussian Radial Basis Function Kernel, Laplace Radial 
Basis Function (RBF), Bessel functions, Polynomial Kernel, 
Hyperbolic tangent kernel, ANOVA radial kernel and Linear 
Splines.  

These eight methods together with a Logistic Regression 
based one constitute nine different classification approaches. 

D. Support Vector Machine 
SVM uses an implicit mapping Φ  of the input data into a 
high-dimensional feature space defined by a kernel function. 

 
Fig. 6.  Input space in two dimensions on the left and feature space in 
three dimensions on the right [23]. 

The learning then takes place in the feature space, and the 
data points appear only inside dot products with other 
points. More precisely, for a projection Φ:  X −> H, the dot 
product <Φ(x), Φ(x’)>   can be represented by a kernel 
function k: 

k(x, x’) = <Φ(x), Φ(x’)> 

which is computationally simpler than explicitly projecting x 
and x’ into the feature space H. 
According to the decision function 

f(x) = sign(<w, Φ(x)> + b), 

a hyperplane <w, Φ(x)> + b = 0 is used in classification, to 
separate the different classes of data. 
The optimal hyper-plane with the optimal classification 
performance is the one with the maximal margin of 
separation between the two classes. 

 
Fig. 7.  Margin of separation between the two classes [24]. 
 

Similar to most kernel methods, the SVM solution w can be 
shown in terms of a subset of training patterns that lie on the 
margin 

w =  )(
1

ii

m

j
i xy Φ∑

=

α  

The training patterns, called support vectors, are sufficient 
for capturing the classification problem. Initially the 
classifier is trained with binary-labeled samples and as soon 
as training has finished, it can classify new samples. SVM 
algorithm uses an n-dimensional space to define the hyper-
plane that best divides two groups of samples. 

E. Logistic Regression 
Logistic Regression uses several predictor variables that 

are either numerical or categories. The output of a linear 
regression can be transformed by using a logit link function 

 logit p = log o = log  
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The inverse of the logit function comprises the logistic 
function, which maps any value of the z to a proportion 
value between 0 and 1. Knowing that a certain fact of a data 
point is true can cause constant change in the odds of the 
outcome. 

F. Kernel Hebbian Algorithm for Iterative Kernel Principal 
Component Analysis (KPCA) 

KPCA [25] is the technique of extracting non-linear 
structure from data. The input data is initially mapped into a 
Reproducing Kernel Hilbert Space (RKHS) and then PCA is 
applied in the space. The direct computation of PCA is 
achieved using kernel methods and formulating it as the 
equivalent kernel eigenvalue problem. The principal 
components are computed by KPCA in a high-dimensional 
RKHS F. The input space is related to F by a nonlinear 
map FRn →Φ : . 
The inner product of two points mapped by Φ are evaluated 
by using kernel functions k(x, x’) = <Φ(x), Φ(x’)>. 
Considering the fact that PCA is able to be formulated in 
terms of inner products, it can also be computed in a RKHS. 

G. Advantages of the classifier’s methodology 
The widespread use of SVM in pattern profile 

classification is not coincidental. SVM provides a simple 
implementation method for binary classification, it offers 
modeling freedom through kernel function choice and it is 
based on machine learning which favors the production of 
robust classifiers mainly in case of binary data. 

However, training is significant for the accuracy of an 
SVM model. Thus a small training set leads to inefficient 
classifiers and large homogeneous training set can cause 
over-fit problems [15]. On the other hand logistic regression 
is capable of using many predictor variables that can either 
be numerical or categories. 
The classifiers developed have been tested on simulated data 
sets, including both clinical and proteomic features. Testing 
the implemented classifiers on real datasets is a key 
challenge in the work lying ahead of us in the LOCCANDIA 
project, with the objective of validating the performance of 
the classification methods selected in the context of the high 
dimensionality of proteomics data combined with their 
relatively small sample sizes, which poses a significant 
challenge to current data mining methodologies. 

H. Integration with LIMS 
The classification algorithms have been implemented in R 

environment (http://www.r-project.org) and are embedded 
into Java (http://java.sun.com/) for the easier integration 

with the LIMS. The communication between R and Java is 
achieved with the use of Rserve 
(http://www.rosuda.org/Rserve/), which allows other 
software to use facilities of R from various languages. 

 

 
Fig. 8.  LIMS interface regarding the classification module. 
 
LIMS provides the required interface for the 

parameterization and execution of the classification module. 
The parameters set include the selection of the desired 
classification method, estimation method and the variables 
to take place in the classification process. As soon as all the 
parameters have been set, the LIMS passes the values of 
patient’s selected properties, the protein concentrations and 
the health status of the patients (where known) to the 
classifier. Patients with known health status are used as a 
training set according to the chosen classification method. 

There is always a trade-off between sensitivity and 
specificity because of the different threshold values used in 
binary prediction. Thus, ROC (Receiver Operating 
Characteristic) curve is used to plot true/false positive rates 
or sensitivity/1-specificity for different thresholds. The area 
under the ROC curve (AUG) equals the probability of 
correctly classified one pair of samples, each one from a 
separate class. It has been used as an important measurement 
of classifier performance. A classifier is considered a 
preferred classifier compared to the other classifier if it has a 
larger AUG value. A random classifier has an area of 
approximately 0.5 under the ROC graph, whereas a perfect 
classifier has an area of 1. 

The LOCCANDIA classification module produces two 
images and an excel file that holds the predicted health 
status of a patient (see fig 8). The first image shows the 
ROC area, whereas the second image presents logistic 
regression distribution graphs. All outputs are persistently 
managed in the database along with the record of the 
classification runs. 

It is in our plans to include in future LIMS releases 
additional data-mining algorithms and methods. For 
example: feature-selection - for the identification of the most 
critical clinical and proteomic diagnostic variables, and 
association rules mining (ARM) - for the discovery of 
interesting (i.e., with diagnostic value) associations between 
clinical and proteomic features. 



  

VI. FUTURE WORK 

A. Protein/peptide identification module 
The objective of this module is to identify those proteins 

and peptides which are not in the initial targeted panel but 
might be present in the measurement. The implementation of 
the module is based on the Phenyx (http://www.phenyx-
ms.com/) software platform. 

Phenyx is a software platform for the identification and 
characterization of proteins and peptides from mass 
spectrometry data. It was developed by GeneBio in 
collaboration with the Swiss Institute of Bioinformatics 
(SIB) and incorporating the true probabilistic and flexible 
scoring system OLAV. Phenyx is specifically designed to 
meet the concurrent demands of high-throughput MS data 
analysis and dynamic results assessment. 

The user will be able to access the Phenyx platform 
through the LIMS interface. A converter is been developed 
to be used for processing large mzXML files and identify 
and only keep the peaklists. The resulting file will then be 
submitted to Phenyx. Hence, users will be able to use 
Phenyx in order to validate the existing peptide regions of 
interest or to identify new ones. 

VII. CONCLUSION 
Innovation in LOCCANDIA is based on the seamless 

integration of a bio, nano and information processing stages 
for the development of a novel integrated diagnostic system. 
The information technology part of the project addresses the 
complexities of the analyzed mixture and is focusing on 
delivering methods and tools for improving the 
measurement reliability, and ultimately providing a robust 
and easy to use system.  

The ability to gather and analyse large amounts of data, 
requires that those data are fully annotated as to their 
method of generation; including provision of relevant 
contextual links (e.g., to related data sets); and descriptions 
of the origin of the biological material under study, the 
preparative and analytical techniques deployed and data 
analyses performed. Such annotation is usually referred to as 
the “metadata” (in essence, this is data about the data). If 
that annotation is incomplete or ambiguous, any comparison 
or summary statistics generated may be inaccurate, or even 
downright misleading; incomplete metadata also precludes 
the independent assessment of the quality of a method or a 
data set. To address this issue we provide reporting 
information whenever data are generated by a particular 
technique. 

As a result, an innovative integrated Clinico-Proteomics 
computational environment has been developed, combining 
standard-based informatics systems and best-of-breed 
computational modules, to support the LOCCANDIA 
integrated lab-on-chip based diagnostic device. 
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