
  

  

Abstract—Proteomic analysis may be useful to investigate 
disorders of the central nervous system, in order to explore the 
protein content of cells and of biological fluids in respect of the 
onset and evolution of diseases. Today, one of the most used 
proteomic approach includes the separation and visualization 
of proteins by means of two-dimensional gel electrophoresis 
(2DE). However the development of fully automatic strategies 
in extracting information from gel images is still a challenging 
task. In this paper we applied a computational strategy to the 
aim of obtaining a  compact representation of the original data. 
This method was applied to an experimental protocol including 
two different clinical groups of amyotrophic lateral sclerosis 
(ALS) and peripheral neuropathy patients : 32 2DE  maps 
generated from cerebrospinal fluid (24 pathologic and 8 control 
subjects) were processed. Quantitative features were extracted 
to describe each image and dealt with the dimension reduction 
technique of local tangent space alignment (LTSA). The 
discovered low-dimensional structure allows to see the gel of 
the dataset as separable, according to their clinical conditions, 
showing the informativeness of the adopted descriptors and 
providing the bases for classification of this kind of samples. 

I. INTRODUCTION 
WO-DIMENSIONAL GEL ELECTROPHORESIS is 
still the most wide spread technique for the separation of 

proteins in biological samples, allowing the analysis of a 
large number of proteins through only one experiment [1], 
[2]. 2DE provides a proteome mapping of the sample by 
means of the orthogonal combination of two electrophoretic 
runs: the first run, via a pH gradient, separates the proteins 
according to their isoelectric point (pI), whereas the second 
run  separates them according to their molecular mass.  The 
result is a two-dimensional map where the proteins appear as 
spots spread all over the gel surface. The maps obtained 
from proteins migration are acquired as grey level images, 
which can be processed and quantified to perform a 
differential analysis between the single protein spots of the 
different samples. Unfortunately, the comparison of 
different gel images is a difficult and time consuming 
process, because of the complexity and low reproducibility 
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of the maps. The computational aspects of image processing 
play a central role in the analysis of 2DE gels [3]. This is a 
very labour intensive step and involves a considerable 
expertise to properly extract information. Usually, the 
differential analysis  is achieved by means of  dedicated 
software packages  but none is yet fully automatic and all of 
them still require a large amount of user interaction to 
complete the analysis [4]. Beside these tools it can be useful 
to develop automatic strategies based on the assessment of 
the complete ensembles of spots shown in the maps [5], [6], 
[7]. In this work, we propose a complementary approach for 
the evaluation of the sample categories involved, avoiding 
the steps of registration and matching. This approach was 
applied  to the gel  images set obtained from cerebrospinal 
fluid (CSF) acquired in studies on neurodisorders. To this 
aim, image descriptors are derived, on the basis of the 
extracted quantitative parameters, to be used in the 
successive exploratory analysis. Each gel image, represented 
as a vector of quantitative features, can be investigated by 
dimension reduction methods, as LTSA. Dimensionality 
reduction  is the transformation of high-dimensional data 
into a meaningful representation of reduced dimensionality 
[8]. Its goal is to discover the hidden structure from the raw 
data automatically managing the curse of the dimensionality. 
As a result, dimensionality reduction facilitates 
visualization, classification and compression of high-
dimensional data.  

II. METHODS 
 We analyzed 32 2DE maps generated from CSF of four 

groups: ALS patients (n=8), neuropathic patients with pain 
(PN, n=8), neuropathic patients without pain (NPN, n=8) 
and control subjects (CN, n=8); patient features and 2DE 
gels generation were already published in [9] and [10]. Gel 
images were acquired using a Molecular Dynamics Personal 
SI Laser Densitometer (Molecular Dynamics, Sunnyvale, 
CA) and saved as grey level images in .tif format. Fig. 1 
represents an example, for each class, of the experimental 
2D maps considered. The 2DE protein patterns covered the 
ranges from  3.2 to 10.4  in  pI and from 5 kDa to 200 kDa 
in relative molecular mass (Mr). The image analysis was 
performed using Progenesis PG240 v2006 software 
(Nonlinear Dynamics, Newcastle, UK) [11]. A spot 
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detection phase was included in the developed strategy to 
improve the signal to noise ratio and let emerge only the 

useful signal; the   
idea was that the features that are then derived refer to areas 
of the image segmented as spots excluding from the 
quantitative description artifacts and background signal. 
Conversely, the extraction of descriptors directly from the 
images, meant as matrices of pixel intensities, without the 
step of spot detection, could include information from areas 
not correspondent to real spots. As a final result, the 
automated spot detection gives back for each analyzed 
image the collection of identified protein spots with their set 
of quantitative parameters as volume, maximal intensity, 
area. A  normalization  step  was   included   to   compensate  
non-expression  related  variation  in spot  intensity  between  
gel images, caused by experimental variations. 
  What makes critical and time consuming the spot matching  
is that proteins may not necessarily be in the same physical 

position or even exactly the same shape or same spatial 
distributions. In general, the positions in pixel, Fig. 2(a), 

from a gel to another one are not equivalent in respect to the 
separation and also proportions are not conserved through 
the collection of samples. To tackle this problem, gels were 
calibrated, as reported in Fig. 2(b), to obtain the position of 
each identified spot in terms of the biochemical coordinates: 
apparent Mr were estimated by comparison with molecular 
weight (MW) reference markers (Precision, Bio-Rad, 
Hercules, CA) and pI values assigned to detected spots by 
calibration as described in the GE-Healthcare guidelines. 
This step makes the samples comparable, without the 
accomplishment of a canonic image matching by means of 
registration techniques. The new space (pI,Mr) is, in 
principle, invariant to the alterations of protein migration, 
allowing the inclusion in the analysis of the gel images that 
otherwise had to be excluded because of the lack of the 
necessary homogeneity. Only at this point it is possible to 
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Fig. 1. 2DE maps of CSF of the four groups investigated: control subjects (a), patients with ALS (b) and neuropathic subjects without pain (c) or 
with pain (d). Proteins were separated by pI in the first dimension and molecular mass in the second dimension.                              
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Fig. 2. Images of protein migration in the different samples do not cover equivalent pixel areas; to bypass this problem, after ad hoc 
calibration, the positions of the detected spots were converted from pixel (a) in biochemical coordinates, pI and MW, allowing the 
compilation of a linear virtual map of the protein migration (b) .  
 



  

accomplish the ideal partition in subquadrants of the 
migration area, expressed in (pI,MW), at a resolution of 0.3 
in pI and 3 kDa in MW. The subdivision is linear in the 
experimental coordinates but does not correspond to a 
regular grid on the gel image. The subquadrants are 
identified consistently, and track the virtual separation area 
in pI and MW space in each gel image, in spite of the 
presence of deformations in the electrophoretic diffusion 
process. The collection of spots was determined for each 
subquadrant and the integral of the correspondent spot 
volumes was obtained and considered as a quantitative 
feature to be used in the successive exploratory data analysis 
[5]. In this way, the samples were described as vectors of 
sorted features and could be investigated by means of a 
nonlinear dimensionality reduction technique.  
 The purpose of dimension reduction is to find a manifold 
(coordinate system) of smaller dimension that will allow to 
project the data vectors on it obtaining a low-dimensional 
compact representation of the data. Traditional dimension 
reduction techniques such as principal component analysis 
(PCA) and factor analysis usually work well when the data 
lie on or near a linear subspace of the input space [12]. 
Unfortunately, they fail to discover nonlinear structures 
embedded in the set of data points [13]. In contrast to the 
linear techniques, the nonlinear techniques have the ability 
to deal with complex nonlinear data such as biological data. 
In this application we used the LTSA on handling the 
problem of high dimensionality; this technique describes 
local properties of high-dimensional data using the tangent 
space in the neighborhood of a data point to represent the 
local geometry, and then align these local tangent spaces to 
construct the global coordinate system for the nonlinear 
manifold. LTSA is based on the observation that, if local 
linearity of the manifold is assumed, there exists a linear 
mapping from high-dimensional data point to its local 
tangent space, and that there exists a linear mapping from 
the corresponding low-dimensional data point to the same 
local tangent space. LTSA attempts to align these linear 
mappings in such a way, that they construct the local tangent 
space of the manifold from the low-dimensional 
representation. In practice, LTSA simultaneously searches 
for the coordinates of the low-dimensional data 
representations, and for the linear mappings of the low-
dimensional data points to the local tangent space of high-
dimensional data. LTSA starts with computing bases for the 
local tangent spaces at the data points xi. This is done by 
applying PCA on the k data points jix   that are neighbors of 
data point ix . This results in a mapping iM  from the 
neighborhood of ix  to the local  tangent space iΘ . A 
property of the local tangent space iΘ  is that there exists a 
linear mapping iL  from the local tangent space coordinates 

jiθ  to the low-dimensional representations jiy . Using this 
property of the local tangent space, LTSA performs the 
following minimization 
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where kJ  is the centering matrix of size k. Zhang and Zha 
[12] have shown that the solution of the minimization is 
formed by the eigenvectors of an alignment matrix B, that 
correspond to the d smallest nonzero eigenvalues of B. The 
entries of the alignment matrix B are obtained by iterative 
summation ( for all matrices Vi and starting from bij = 0 for 
∀ ij) 
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where iN is a selection matrix that contains the indices of 
the nearest neighbors of data point ix . Subsequently, the 
low-dimensional representation Y  is obtained by 
computation of the eigenvectors corresponding to the d 
smallest nonzero eigenvectors of the symmetric matrix 
 

                                    
1
2

( ).TB B+                               (3)  

   
To assess the accuracy of the discrimination of the samples 
belonging to different groups obtained with the proposed 
representation, a leave one out cross-validation through 
linear discriminant analysis (LDA) was accomplished.  

III. RESULTS AND DISCUSSION 
The procedure was applied on the considered data set to 

the aim of assessing the chance to discriminate patients 
affected by ALS from control subjects and neuropathic 
patients (either with or without pain) and to verify whether 
the method would be able to discern between subjects with 
or without algic symptomatology in the peripheral 
neuropathy groups (these latter samples were already 
processed with the linear method of dimensionality 
reduction of PCA, as reported in [5]). The four possible 
pairwise comparisons between the considered clinical 
groups were accomplished.  
In Fig. 3(a) it is reported the result of the first comparison, 
between ALS and CN samples. After dimension reduction, 
the two groups are disposed in separable regions. The output 
may reveal the structure and the distribution of the input 
data set. Leave one out cross-validation provided an 
accuracy of 68.75%. The coordinates of the low-
dimensional space were able to account for the differences 
between ALS and NPN subjects as shown in the Fig. 3(b). 
The accuracy estimated by leave one out cross-validation 
was  81.25%. The result of LTSA for the comparison of the 
data relative to ALS and PN samples is shown in the Fig. 
3(c): the projection of the data vectors on a low-dimensional 
manifold allows to see the two groups of samples in 
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different areas of the space. For this comparison we obtained 
a leave one out cross-validation of 100%. At last we 
analyzed the NPN  and  PN  groups  to assess   the chance  
to discriminate between subjects without pain and with algic 
symptomatology. The synthetic representation provided by 
LTSA for these two categories, observable in   Fig. 3(d), 
allows to segregate the samples consistently with their 
clinical conditions. The capacity of identifying 
discriminative patterns between different clinical conditions 
through the application of the developed method has been 

confirmed, also in this case, as in [5], by the detection of a 
single outlier. As showed in Fig. 3(d), a sample of NPN is 
clearly positioned in the opposite category; in fact at the first 
diagnosis this patient was annotated as NPN but 
successively showed disease progression with pain 
appearance, as learnt in further  clinical  controls. A leave 
one out cross-validation reported an accuracy of 68.75%. 

The  results  obtained  are  very significant and robust 
considering that the samples of the data  set are not  
technical replicates, i.e. gels obtained from fractions of the 

Fig. 3. Visualization of the investigated data set after feature extraction and dimension reduction via LTSA. The projection on 3D manifold shows that 
patients affected by Amyotrophic Lateral Sclerosis (ALS, dark diamonds) are separated from control subjects (CN, light grey spheres) (a); the compact 
representation on the low-dimensional space evidences the differences between ALS and neuropathic patients without pain (NPN, dark grey cones); the 
items correspondent to the two categories examined, ALS samples vs neuropathic patients with pain (PN, dark grey cones), are positioned in different 
regions of the space (c) and even subjects without pain and with algic symptomatology are compared, the corresponding positions are clearly clustered 
according their clinical conditions, except for a sample of the NP group, that, although, initially classified as NPN, has successively developed algic 
symptomatology (d). 



  

same biological sample. In this work, “biological” replicates 
were processed, i.e. each gel image is representative of a 
different human subject, so the gels are characterized by low 
homogeneity, however none of the gel was excluded from 
the analysis; this brings the tackled problem to a much 
higher level of variability and complexity. The method 
developed can be a useful  complement in the routine of a 
proteomics laboratory, because it is highly repeatable and 
does not need any “a priori” information. It may provide an 
effective visualization tool and lead to the definition of a 
protocol of automatic classification, that may represent a 
complementary approach to the differential analysis aiming 
to perform rapid and systematic screening tests. The 
information extraction in the processing of 2DE images is an 
important topic in computational biology and the proposed 
strategy may provide an interesting and fruitful point of 
view capturing the essential information from gel images. 
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