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Abstract— Fluorescence microscopy imaging is a constant
trade off between signal to noise ratio, total observation time
and spatio-temporal resolution due to photo toxicity. In this
paper, we propose a method to estimate the quality of a
fluorescent image acquisition, from a single image, taking into
account both signal dependent and signal independent noise.
We propose a method for the calculation of the signal to
noise ratio globally and locally. We validated our algorithm on
real experimental data and data with known simulated noise.
Results allow us to conclude that this fully automatic method
provides a good quantification of the image quality.

I. INTRODUCTION

Fluorescence Microscopy imaging is a constant trade off
between signal to noise ratio (SNR), total observation time
and spatio-temporal resolution due to photo toxicity [7]. The
purpose of our study is to provide a quantitative way of
image quality evaluation, which presents several interests.
This value can then be used to give a quantitative feedback
to the experimentalist on the quality of the image obtained
and in addition for subsequent experiments by determining
minimal requirements for automatic segmentation, or by
providing a comparison tool among several acquisitions. It
can also be used for compression [4] or for feeding a tracking
algorithm [14], [15].

Previous studies of SNR in fluorescence microscopy from
an image processing point of view can be found in [9], [14],
[15]. In all cases, either gaussian or poisson noise alone is
consider. In order to differentiate the noise components and
to give their respective levels, Bernas and co-workers [4],[5]
fitted a quadratic model of the form

V = A + PS + MS2 (1)

, whereS is the signal corrected for background,V is the
estimated noise variance, andA, P andM are the variances
of the three noise components considered: additive, Poisson
and multiplicative noise, respectively. In [4], the estimation
of A was considered inaccurate and moreover bad results
were obtained when the background value was 0. In addition,
the parameters fitting was done on times series of 128
images.

In general, noise estimation methods follow two different
approaches. The first is the smoothing based approach, where
the noise is estimated by the difference between the original

The authors gratefully acknowledge the financial support ofthe Higher
Education Authority.

P. Paul and D. Kalamatianos are with Hamilton Institute, Na-
tional University of Ireland, Maynooth, Ireland{perrine.paul,
dimitris.kalamatianos}@nuim.ie

H. Duessmann and H. Huber are with the Department of Physiology
and Medical Physics, RCSI, York House, York Street, Dublin 2, Ireland
{hduessmann, heinhuber}@rcsi.ie

and the smoothed image, using any adapted noise removal
method. The second approach, so called the block-based
approach, subdivides the image in blocks, and considers the
variance of the most homogeneous blocks in the image as
an estimate of the noise. In this study, we use a combination
of both methods. We used the block-based method proposed
in [3], which is particularly efficient when additive gaussian
noise is present. We also used a smoothing based approach,
offering a good estimation of the global noise and thus of the
signal-dependent noise in the image, using discrete wavelet
transform shrinkage to remove the noisy components. A
model similar to 1 is then fitted to the estimated noise to
compute the level of signal dependant noise. These two
approaches were also proposed in [5] as two concurrent
estimations of the noise.

In addition, we present a statistical justification of the
model presented in [4]. We propose a way to estimate
the noise in fluorescence microscope images from a single
image, taking into account both signal dependent and signal
independent noise. Combining both approaches presented in
[5], we present a new expression of the signal to noise ratio
(SNR), for both global and local estimation. By estimating
the SNR locally, we take into account non uniform repartition
of the noise as a result of stronger signal (and thus stronger
noise) or possibly some detector faults.

In section II we discuss the different kinds and sources of
noise as listed in the literature. A method to automatically
estimate the background intensity and the global noise is
presented in section III. Section IV describes how we derive
a local SNR expression from the global SNR previously
calculated. In the section V, we describe the data used to
evaluate the performance of our noise estimation method.
Finally, our results are summarized in Section VI.

II. SIGNAL AND NOISE IN FLUORESCENCE MICROSCOPY

The most common source of noise in fluorescence mi-
croscopy is the photon detection noise [9], [5], [4], also
known as shot noise or intrinsic noise [16]. Another source of
noise is the extrinsic noise. It is composed by the dark current
which follows a Poisson distribution, but also by electronics
noise and detector-readout noise, both of which follow a
Gaussian distribution, and by quantization noise which is
characterized by a uniform law [16]. Cross-talk noise may
appear by interference from other probes and in order to
reduce this noise, in this study, images were acquired using
the multi-track method, which generates multi-fluorescence
images without crosstalk of emission signals, by means of
fast switching between excitations and quasi-simultaneous
detection [1].



To model the noise in fluorescence images, we first need
to consider the number of photonsf(u, v) detected per pixel
(u, v), which can be expressed as [12]

f(u, v) = s(u, v) + λ(u, v) (2)

where s(u, v) is the true number of photons sent for the
region corresponding to this pixel andλ(u, v) denotes the
difference between the true and the detected signal, i.e.
the noise. According to [12],f(u, v) follows a Poisson
distribution of parameters(u, v), which means that both the
mean and the variance of this distribution ares(u, v).

var(f(u, v)) = s(u, v) (3)

The corresponding pixel intensityI(u, v) is the detected
number of photonsf(u, v) multiplied by the photo-multiplier
sensitivity, also called here detector gainG. If we consider
additional white noise and multiplicative noise, this leadus
to the following expression of the image intensityI:

I = G ∗ f + η + m ∗ G ∗ s, (4)

whereη is a white additive noise of varianceA, andm is
the multiplicative noise of varianceM . The global noiseNg

can then be defined as:

Ng(u, v) = I(u, v) − G ∗ s(u, v)) (5)

whereG ∗ s(u, v) is the noise-free image. Combining Eqs.
2 4 and 5 we can express the variance ofNg as

var(Ng) = var(G ∗ λ + η + m ∗ G ∗ s) (6)

Under the assumption that the additive noiseη, the photonic
noiseλ and the multiplicative noisem are independent, and
considerings(u, v), also noteds, as deterministic, Eq.6 is
equivalent to:

var(Ng) = G2 ∗ var(λ) + var(η) + (G ∗ s)2 ∗ var(m) (7)

As s(u, v) in Eq. 2 is considered to be deterministic, it
follows that its variance is null and then combined with Eq.
3, we can deduct the variance ofλ:

var(λ(u, v)) = var(f(u, v)) = s(u, v) (8)

We can then obtain the expression for the calculation of
global noise variance seen in [5], by rewriting Eq.7 as

var(Ng(u, v)) = G∗(G∗s(u, v))+A+M∗(G∗s(u, v))2 (9)

whereA andM are the variances of additive and multiplica-
tive noises, respectively.

III. E STIMATION OF THE GLOBAL SIGNAL TO NOISE

RATIO

The global SNR is estimated in two parts. Firstly, we
compute the background noise and mean intensity, based on
the estimation of the background variance as proposed in [3].
Secondly, the signal dependent components are computed
by wavelet decomposition, using the underlying hypothesis
that high frequency corresponds to noise [11], [12], and
identifying the level of noise by fitting the model from Eq. 9.

A. Estimation of the background mean intensity and noise
variance

We want to estimate the background noise varianceσ2
Bg

and the background mean intensityIBg. For this purpose,
we have implemented the algorithm previously proposed in
[3]. Firstly, the image is subdivided in blocks of the same
size. Each block is analyzed by computing an inhomogeneity
measure based on the convolution with 8 masks enhancing 8
directions of edges. The sum of this 8 convolution gives the
inhomogeneity measure value for each block. To calculate
the estimated background varianceσ2

Bg and mean intensity
IBg, an average of the variance and mean is taken in the
20 most homogeneous blocks, i.e. those with the lowest
inhomogeneity values. An example of block identified as
background with this algorithm is shown in Fig. 1b.

B. Estimation of the global noise Ng

The global noise was estimated as the lossy part of the
JPEG 2000 compression. We used the codecs implemented in
JASPER version 1.900.1 [2]. The image is firstly transformed
to the time-frequency domain using Discrete Wavelet Trans-
form with the Daubechies irreversible wavelet waveform
[11], [12]. As a consequence of quantization of the wavelet
coefficient used for the JPEG 2000, a part of the signal is lost
which is assumed to be mainly noise. We then compute the
difference between the original imageI and the compressed
image Ijp2 in order to get the estimated global noise per
pixel. This global noise is represented as an image of same
size as the original image, noted herebyÑg. Fig. 1c shows
a detail of the original image appeared in Fig. 1a, and
Fig. 1d shows the same detail after noise removal by wavelet
shrinkage. The estimated global noise is shown in Fig. 1e.

C. Estimation of the Signal Dependent Noise

We plotted the variance of the estimated global noise
against intensity values of the estimated noise-free image
and tried to fit the model from Eq. 9. An example of fitting
is shown in Fig. 2.

We avoided the false standard deviations due to saturation
at maximum level of intensity in a 8 bit image by removing



(a) (b)

(c) (d) (e)

Fig. 1: Different steps of the noise estimation: (a) original
image: record 1 of channel with stain GFP, (b) block of
pixels identified as background (in red) for estimatingσbg

andIBg, (c) detail of original image in the white square, (d)
Fig. 1c after wavelet shrinkage with JPEG 2000 compression,
(e) estimated noise per pixel as the difference between
Figs. 1c and 1d. It is interesting to underline that both
released (homogeneous signal) and non released (punctuate
signal) CyC-egfp signal were preserved by the JPEG 2000
compression.

this value. In order to estimate the parametersG and M ,
we took Ijp2 as an estimate ofG ∗ s (the noise-free im-
age), and we used̃Ng as an estimate of the global noise.
We imposedA to get the value of the background noise
varianceσ2

Bg, which means that we neglicted for the fitting
the signal-dependant noise in the background. Indeed, the
background mean intensity values are very low compared
to the signal emitted by cells. We then solved numerically
the following constrained linear least-square problem, using
the preconditioned conjugate gradient optimization algorithm
[6], to estimateG the level of Poisson noise (gain estimator)
and the variance of the multiplicative noiseM :

min
G,A

1
2‖

~σ2
g − (σ2

Bg + G~I + M~I2)‖2
2

such thatG ≥ 0, M ≥ 0,

and with initial conditionsG = 1, M = 0,

(10)

where
- ‖.‖2 is theL2-norm

(a)

(b) (c)

Fig. 2: Example of Model fitting on one image: (a) Fitting
of the model from Eq.9 to the variance of noisẽNg for each
value of the signalIjp2 (the noise free image) noted as red
crosses. (b) Residuals of the model fitting. (c) Number of
pixels per intensity value inIjp2. When there were less than
84 pixels, the intensity value was not taken into account for
the fitting.

- ~I is a vector of intensity from 0 to 254, in which values
with more than 84 pixels were removed. This threshold was
given in [10] as the minimum sample size to obtain an
estimated standard deviation into 10% of its true value with
a confidence in the Chi-square sense of 80%.
- The vector ~σg was constructed as follows: for each value
i from 0 to 254, we computed the variance of the subset of
noise valuesÑg(p(i)), wherep(i) was the subset of pixels
whose intensity values inIjp2 were equal toi.

D. Expression of the signal to noise ratio

The expression of the SNR in decibel was chosen to be
as follows:

SNRG = 20 log10

(

Ijp2 − IBg
√

var(Ng)

)

(11)

whereIjp2 is the mean value ofIjp2. As we have computed
both the signal dependent and background noise in sections
III-A and III-C, and assumed that background noise was
uniformly distributed in the image, we can replace var(Ng)
in Eq. 11 by its value from Eq. 9:

SNRG = 20 log10

(

Ijp2−IBg
√

σ2

Bg
+G∗Ijp2+M∗I

2

jp2

)

(12)

IV. ESTIMATION OF THE LOCAL SIGNAL TO NOISE RATIO

To obtain local image quality information, we first divided
the image in smaller squares and then we computed a
local SNR per sub-region. The size of the block can be



interactively changed by the user if needed. The expression
of the local SNR for each blockbl was derived from Eq.12:

SNRL(bl) =

20 log10

(

Ijp2(bl)−IBg
√

σ2

Bg
(bl)+G(bl)∗Ijp2(bl)+M(bl)∗Ijp2(bl)2

)

(13)

where Ijp2(bl) is the mean intensity in the block on
which the local SNR is calculated, and the parameters
σ2

Bg(bl),G(bl) and M(bl) are computed per block. If only
one image is used, then the value estimated on the whole
image is used for each block too.

The quality of the image could be non uniform due to
uneven illumination for example. Moreover, the signal for
each cell can be of different intensity because of the focus
plan, the fluorescence stain and activity of the cell, as well
as some faults from the Photo-Multiplier (PMT) detector. In
order to detect these faults, we can use several acquisitions
keeping the same microscope parameters in order to get
sufficient number of points for model fitting to get an
estimated noise level per block rather than a global level.

V. DATA SETS USED FOR PERFORMANCE EVALUATION

We used two data sets to study the global SNR. The
first set contains real noise created by tuning the parameters
of the microscope and the second one contains simulated
noise added to microscope image. The microscope used
for this series of experiments was a Zeiss LSM 510 with
the following objective: Plan-Apochromat 63x/ 1.4 oil DIC.
The cells were HeLa D98 stably expressing Cytochrome-
C-eGFP fusion protein [8]. The staining was Hoechst (100
nM, 45 min), detected in channel noted H, Green Fluorescent
Protein, detected in channel noted GFP, and Mitotracker Red
(50 nM, 20 min), detected in channel noted MTR [8]. We
used 8-bit gray scale images, with a size of512 × 512.

A. DataSet 1: Real Noise

The first data set consists of 6 records with 3 channels
measuring the previously staining: channel H, channel GFP
and channel MTR. The 6 records were created augmenting
the level of noise by changing the photomultiplier (PMT)
sensitivity, also called detector gain, the pixel dwell time,
the number of scan per image, and the acousto-optic tunable
filter (AOTF) expressed relatively to the initial power for the
different wavelength, as described in Table I. The post PMT
offset, the post PMT analog gain, and the different filters,
pinholes and resolution were not changed for the different
acquisitions.

TABLE I: Microscope settings during image tests acquisi-
tions for data set 1

Records 1 2 3 4 5 6
Detector gain
channel MTR 750 750 850 850 950 1050
channel GFP 650 650 750 750 850 950

channel H 650 650 750 750 850 950
Exposure Time 3.2 3.2 3.2 1.6 1.6 1.6
Average Scan 4 1 1 1 1 1
AOTF (in %)

543 nm 20 20 10 10 5 3
488 nm 10 10 5 5 2 1
405 nm 3 3 1.5 1.5 0.8 0.3

B. Data Set 2: Simulated Noise

Simulated noise was added to the first image of the real
data. For this purpose, the channel H (staining Hoechst)
was used because it was the one with the least amount of
noise. In order to test our algorithm’s ability to identify noise
components, we produced data with different kinds of noise.
In particular, Poisson, Gaussian noise, and a combination of
both were added to the image. To check the influence of the
number of blocks used, the same level of noise was simulated
5 times creating a test image 5 times bigger than the original
one. In the real data, the background mean value was close
to 0. However, changing the experiment set up parameters
would lead to a background value different than 0, but still
as low as possible in order to obtain maximum contrast.
Poisson noise could also then appear in the background. To
test our algorithm in this case, we run the same simulation
after adding an offset of 5 (for 256 gray levels) to the original
image.

VI. RESULTS

For all performance evaluations, the computation time was
less than 2 seconds for a512×512 8-bit image using a 2.33
GHz processor with 2 GB of RAM. The variance of the
multiplicative noiseM was in all cases zero or less than
10−6, in accordance with the results shown in [5].

A. Performance evaluation on real noise

The results of our estimation on data set 1 are shown
in Fig. 3. The Poisson noise is strongly signal-dependent
and its level is expected to be proportional to the gain of
the microscope photon detectors. Indeed, this is evident in
Figs. 3a,3c, and 3e, meaning that this kind of noise can be
identified. As it can be seen in Figs. 3d and 3b, the SNR
is also mainly influenced by the detector gain. The pixel
dwell time was changed between record 3 and 4 and this had
a limited influence on the SNR. The SNR for the channel



MTR rapidly decreased as seen in Fig. 3f but these results are
coherent with visual evaluation and with the SNR computed
using the first record as reference signal by ImageJ [13]: the
SNR in dB is 7.1, 1.5, -0.24, -4.0, and -6.4 for records 2 to
6 respectively when our results for these records are 7.32,
0.99, -0.10, -2.50, and -2.94. We used no reference image to
obtain these results unlike the ImageJ plugin.

(a) (b)

(c) (d)

(e) (f)

Fig. 3: Results for data set 1: Poisson noise parameter
G against the real detector gain for (a) GFP channel (c)
H Channel (e) MTR Channel; Poisson noise parameter,
background noise parameter and global Signal to Noise Ratio
for (b) GFP channel (d) H Channel and (f) MTR Channel

B. Performance evaluation on simulated noise

Results from the estimation of noise on data set 2 are
graphically presented in Fig. 4. The relative level of signal
dependent noise and background noise was well evaluated.
When background was 0, and only the Gaussian noise level
was modified, the estimated Poisson noise was stable and
the estimated background noise was varying accordingly.
When only Poisson noise was modified, then the estimated
background noise was stable and the estimated Poisson
noise level was varying accordingly. The presence of a non-
zero background influences mainly the estimated background

(a)

(b)

Fig. 4: Results on data set 2: (a) Estimated variance of the
background noise and (b) estimated level of Poisson noise
parameterG against the simulated level of both Gaussian
and Poisson noise

noise. In this case, in addition to the added Gaussian noise,
the background presents a Poisson noise component with a
variance proportional to its mean intensity value. The method
used to compute the background noise gave the same results
when only one or 5 images were used. The estimated Poisson
noise is lower when estimated using 5 images, which means
that with only one image, we could slightly overestimate the
Poisson noise. Thus, the more images available the more
robust will be the method, even if useful results are already
obtained with a single image.

C. Visualization of the local signal to noise ratio

Using our expression 13 enhances the signal level rela-
tively to the noise rather than the noise level as shown in
Fig. 5. In order to detect a local failure of the detector, more
than one image is needed. Indeed, our algorithm for Poisson
noise detection needs each pixel value to contain at least 84
pixels and it is unlikely to be the case in each sub-block of
the image. We then simulated a series of 10 images with an
added local Poisson noise and applied the algorithm for the
global SNR to the concatenation of 10 sub-blocks each time.
The corresponding color map of the local SNR is shown on
Fig. 6.



(a) (b)

Fig. 5: Color map of the local SNR in dB computed from
Eq. 13 for a block size of24 = 16, for (a) channel MTR
record 1 and (b) channel MTR record 6.

(a) (b) (c)

Fig. 6: Color map of the SNR by block in dB computed
with 10 images for a block size of27 = 128, for record 1 of
GFP channel (a) original (b) with simulated Poisson noise
locally in the black rectangle (c) with simulated Gaussian
noise locally in the black rectangle

VII. CONCLUSIONS AND FUTURE WORKS

We have proposed a new method to identify the signal
dependent and signal independent noise components from a
static image, adapted from [5] and [4]. We have shown that
this method gives a good estimation of the SNR and the
level of the different noise components. The purpose here is
not to evaluate the real detector gain, since we know it from
the microscope settings, but to evaluate the resulting noise
in the obtained images. Experimental images contain mainly
Poisson noise, but there are also additive components that can
not be neglected. The robustness of the noise computation
can be increased by using additional image by simply adding
more points the noise-intensity fitting curve adding pixels
from other images taken with the same microscope settings,
but with a linear increase on the computational cost. We
have also proposed a new method to calculate the SNR of
an image locally, and thus allowing the local calibration of
the image set up. All methods implemented in this study
are fully automatic and the only parameter to be tuned
for the convenience of the user is the block size for the

estimation of the local SNR. Our method does not remove
the noise, but instead smooths the image, comprising the
signal dependent noise and the wavelet shrinkage based on
entropy offered by JPEG 2000. Due to the limitations of this
compression, if the image is too noisy, then the estimated
noise-free image will still contain noise and the model
fitting will not give correct results. Moreover, the estimated
noise-free image can present blurred and then wider edges,
which will result in an overestimation of the variance of
noise. A possible extension could be to use more efficient
noise removal methods. However, despite these limitations,
this method could be useful for experimentalists and image
analysts working in the field of fluorescence microscopy.
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