
  

  

Abstract—During the last few years a quite large number of 
fluorescence imaging applications have been reported in the 
literature, as one of the most challenging problems in medical 
imaging is to “see” a tumour embedded in tissue, which is a 
turbid medium. This problem has not been fully encountered 
yet, due to the non-linear nature of the inverse problem. In this 
paper, a novel method for processing the forward solver 
outcomes is presented. Through this technique the comparison 
between the simulated and the acquired data can be performed 
only at the region of interest, minimizing time-consuming pixel-
to-pixel comparison. With this modus operandi a-priory 
information about the initial fluorophore distribution becomes 
available, leading to a more feasible inverse problem solution. 

I. INTRODUCTION 
HE combined progress in fluorescent probes technology 
and optical imaging modalities have encountered a 

number of difficulties in the noise dominated fluorescence 
image acquisition. Nevertheless, fluorescence signal 
processing still lacks the feasibility and time efficacy, due to 
the enormous amount of the recorded data. The current 
state-of-the-art in fluorescence molecular imaging 
applications requires parallel programming with multiple 
computational units and computational time in the order of 
hours. The most important reason for this lack of time 
efficacy is the non-linear nature of the inverse problem, 
which requires iterative procedures for convergence [1], and 
the pixel-to-pixel comparison between measured and 
computed data [2]. 

In this paper, a novel method for processing the forward 
solver outcomes is presented. Through this technique the 
comparison between the simulated and the acquired data can 
be performed only at the region of interest, minimizing time-
consuming pixel-to-pixel comparison. 

Within this work a custom forward solver has been 
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developed, based on the Diffusion Approximation [3]. 
Galerkin finite elements [4] have been introduced to 
originate the variational formulation of the Diffusion 
Approximation, whereas a Delaunay triangulation scheme 
[5] has been applied for the region discretization. For the 
three-dimensional simulation of the fluorophores 
distribution, the super-ellipsoid models [6] have been 
selected. Those models have been extensively used in 
various machine vision applications [7], [8], however this is 
the first time these are used to simulate fluorophore 
distribution in a fluorescence molecular imaging application. 

The estimated fluorescence emission distribution over the 
region surface is converted into intensity levels, which 
corresponds to the measurand of the imaging system [9]. 
However, a back-projection scheme is required to transform 
the global coordinates of the simulated signal into image 
local coordinates, and eventually pixels. This back-
projection requires accurate knowledge of the imaging 
system calibration parameters, which are the relation 
(translation and rotation) between the global coordinates 
system and the camera-centered system and the distortion 
parameters that the camera lens adds. Furthermore, the filter 
transmission factor should be incorporated into the 
simulated signal, in order to match the real acquisition 
system [9]. 

Once the simulated image has been formulated, image 
segmentation algorithms are applied, in order to perform an 
accurate segmentation. Morphological filtering provides a 
contrast enhancement, whereas a custom watershed 
transformation [10] extracts the region of interest from the 
simulated image. It is essential that the same algorithms will 
be applied to the acquired images as well, since intensity 
levels, along with the geometrical features, would lead to the 
image registration convergence. 

II. METHODOLOGY 

A. Forward Solver 
In the Diffusion Approximation the Radiative Transfer 

Equation can be expressed by the P1 approximation [11]: 
 

 iω c( )U r( )= ∇ D r( )∇U r( )[ ]− μa r( )U r( )+ Λ0 r( ) (1) 
 
where ω  is the angular modulation frequency of the light 
source in sr/s,  c is the average speed of light in the medium 
with typical value in the case of tissue     c = 2.55 ⋅1010  cm/s, 
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  U r( ) is the average intensity or fluence in W/cm2,  D r( ) is 

the photon diffusion coefficient in cm,   μa r( ) is the medium 

absorption coefficient in cm-1 and Λ0 r( ) is the isotropic 
component of the source in W/cm2. The photon diffusion 
coefficient is expressed as: 
 

      D r( )= 1 3( ) aμa r( )+ ′ μ s r( )[ ]−1
 (2) 

 
with   ′ μ s r( ) being the reduced scattering coefficient in cm-1, 
whereas the factor   a  is related to the absorption, scattering 
and anisotropy of the medium. In the case of tissue, this 
factor is in the order of     a ~ 0.5, assuming anisotropy 
    g ~ 0.8 [12]. 

The exact boundary condition for the diffuse intensity 
requires that there should be no diffuse intensity re-entering 
the medium from outside, at the surface   S . However, this 
boundary condition cannot be satisfied exactly and some 
approximate boundary conditions must be considered. One 
such approximation requires that the total diffuse flux 
detected inwards at the surface   S  should be zero [3]. This 
condition in terms of the average intensity   U r( ), taking into 
account the mismatch between the refractive indices of the 
inspected medium and the surrounding one, is expressed by 
the Robin type condition [11] [13] as: 
 

      U r( )= −2RD r( )∂U r( ) ∂n [ ],   r ∈S ,  s ⋅ n < 0  (3) 
 
where the coefficient   R  represents the boundary reflection 
coefficient and depends on the mismatch between the 
refraction indices. For a typical tissue/air value of relative 
index of refraction of tissue with respect to air,     ntis / air = 1.33, 
this coefficient equals to     R = 2.34 [12]. 

In fluorescence imaging two light fields are taken into 
consideration, the excitation and the emission. For the 
excitation light, indexed   exc, the only light source is the 
external excitation light   I src r( ). On the other hand, for the 
emission field, indexed   em , there exist only the internal 
fluorescence sources. Thus assuming fluorophore quantum 
yield η , the internal light sources are described as: 

 

      Λem r( )= ημa,exc
fluo r( )1 − iωτ r( )[ ]−1

U exc r( ) (4) 
 

where     μa,exc
fluo r( ) is the absorption coefficient of the 

fluorophores at the excitation wavelength, τ r( ) is the 

fluorophore lifetime in s and   U exc r( ) is the average intensity 
of the excitation light. 

Under these premises and taking into consideration (1) 
and (3) the following equation system arises: 

 

  iω c( )+ μa,exc r( )[ ]U exc r( )− ∇ Dexc r( )∇U exc r( )[ ]= 0  (5) 

  

iω c( )+ μa,em r( )[ ]U em r( )− ∇ Dem r( )∇U em r( )[ ]
= ημa,exc

fluo r( )1 − iωτ r( )[ ]−1
U exc r( )

 (6) 

 U exc r( )+ 2RDexc r( )∂U exc r( ) ∂n [ ]= 4I src r( ) (7) 

 U em r( )+ 2RDem r( )∂U em r( ) ∂n [ ]= 0 (8) 
 
Within this model it is assumed that the presence of the 

fluorophores does not alter the reduced scattering coefficient 
of the tissue. However, the absorption coefficient is assumed 
to be the sum of tissue absorption coefficient and the one of 
the fluorophores,   μa,exc/ em r( )= μa,exc/ em

tis r( )+ μa,exc/ em
fluo r( ). 

A finite elements solution of the Diffusion Approximation 
model can be derived by posing the model in a weak 
variational form with the use of piecewise linear functions 
[14]. To obtain the variational formulation of the model it is 
taken into consideration the fact that the solution of (5), is 
the light source for (6). Thus, the two equations will be 
confronted separately, to prevent the occurrence of unstable 
equation systems. 

Therefore, the excitation field (5) is multiplied with the 
test function ψ r( ) and integrated over the domain  V : 

 

   

iω c( ) U exc r( )ψ r( )dr
V
∫ + μa,exc r( )U exc r( )ψ r( )dr

V
∫

− ∇ Dexc r( )∇U exc r( )[ ]ψ r( )dr
V
∫ = 0

 (9) 

 
Using the first Green’s identity, an extension to the theorem 
of divergence for integration by parts [15], it is obtained: 
 

 

∇ Dexc r( )∇U exc r( )[ ]ψ r( )dr
V
∫ =

Dexc r( ) n ∇U exc r( )[ ]ψ r( )dr
S
∫ − Dexc r( )∇U exc r( )∇ψ r( )

V
∫

(10) 

 
The boundary integral term in (10) can be written as: 
 

 

Dexc r( ) n ∇U exc r( )[ ]ψ r( )dr
S
∫ =

2R−1 I src r( )ψ r( )dr
Ssrc

∫ − 2R( )−1
U exc r( )ψ r( )dr

S
∫

 (11) 

 
where the Robin type boundary condition of (7) was taken 
into consideration. Inserting (10) and (11) into (9), the 
required variational (weak) formulation is obtained: 
 



  

    

iω c( ) U exc r( )ψ r( )dr
V
∫ + Dexc r( )∇U exc r( )∇ψ r( )

V
∫

+ 2R( )−1
U exc r( )ψ r( )dr

S
∫

+ μa,exc r( )U exc r( )ψ r( )dr
V
∫ = R 2( ) I src r( )ψ r( )dr

Ssrc

∫

 (12) 

 
In order to obtain the finite element approximation of the 

Diffusion Approximation model, the solution   U exc r( ) of the 
variational formulation (12) is approximated in piecewise 
linear functions per element, based on the nodal values of 
the   U exc r( ) solution. Hence, the discretization of  U exc r( ), 
following the Galerkin method [4] [15] is expressed as: 
 

    
U exc r( )≈ U exc

h r( )= ak ,excψ k r( )
k =1

N

∑  (13) 

 
where   ψ k r( ) are the nodal basis functions of the finite 
elements discretization,     ak ,exc  is the photon density in nodal 
point   k , with       k = 1,L , N , and   N  is the number of nodal 
points. Furthermore, as test functions the test functions 

  ψ p r( ),       p = 1,L , N , are chosen, in order to obtain the 
algebraic equations for all the unknowns. The resulting 
system is linear algebraic, expressed in matrix mode as: 
 

  Aexca exc = fexc  (14) 
 
where     a exc = ak ,exc[ ] is the photon density of the excitation 
field in nodal points of the finite element mesh. The matrix 

  Aexc contains the finite element approximation of the 
Diffusion Approximation model and it is of the form: 
 

    Aexc p, k( )= Keexc p, k( )+ Meexc p, k( )+ Peexc p, k( ) (15) 
 
with     Keexc p, k( ) being the mass matrix,     Meexc p, k( ) being 

the stiffness matrix and     Peexc p, k( ) being the boundary 
condition matrix of the finite element approximation: 
 

    

Keexc p, k( )=

iω c( ) ψ k r( )ψ p r( )dr
V
∫ + μa,exc r( )ψ k r( )ψ p r( )dr

V
∫  (16) 

    
Meexc p, k( )= Dexc r( )∇ψ k r( )∇ψ p r( )dr

V
∫  (17) 

    
Peexc p.k( )= 2R( )−1

ψ k r( )ψ p r( )dr
S
∫  (18) 

 
Under the same modus operandi, a similar matrix system 

derives for the emission field, as described in (6). All the 
matrices for this field are approximated as in the excitation 

case. Moreover, the source vector is of the form: 
 

  fem p( )= c p, k( )a exc k( ) (19) 
 
with the matrix   c p, k( ) being as follows: 
 

  
c p, k( )= η μa,exc

fluo r( )1 − iωτ r( )[ ]−1
ψ k r( )ψ p r( )dr

V
∫  (20) 

 
Thus from (19) the coupling between the excitation and 

the emission models becomes apparent. However, in order 
to avoid any unstable conditions, due to matrix inversions 
and multiplications, the problem confrontation is succeeded 
separately for each model. Furthermore, it becomes obvious 
that the finite elements discretization scheme must be the 
same between the two models; otherwise the excitation 
model solution should be updated to the new discretization, 
resulting into accuracy losses and decrease of time efficacy. 

B. Region Discretization 
The region under inspection was discretized via 

application of the Delaunay triangulation scheme [5]. 
Delaunay triangulation is a pure geometrical discretization 
technique and it is among the most common techniques 
applied to Finite Elements problems. The elements that have 
been selected for the described forward solver were linear 
tetrahedral elements, distributed over a uniform mesh. The 
set of tetrahedral coordinates ζ1 , ζ 2 , ζ 3  and ζ 4  are in terms 
of a parametric coordinate system and in literature they 
receive different names, such as isoparametric coordinates 
or shape function coordinates. 

The geometric definition of the element in terms of these 
coordinates is expressed as: 
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 (21) 

 
where the sixteen matrix entries depend only on the vertex 
locations of the tetrahedron and   V  is the elemental volume.  

Utilizing these elemental definitions, the mass and 
stiffness matrices can be approximated by expressing them 
in the simplex coordinates [15]. 

The fluorophore distribution was simulated by applying 
the super-ellipsoid model, defined as the solution of the 
general form of the implicit equation: 
 

  
f x, y, z( )= x α1( )2 ε2 + y α 2( )2 ε2⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

ε2 ε1

+ z α 3( )2 ε1  (22) 

 
In this equation, one can recognize an ellipsoid form, 
enriched by two more parameters, ε1 and ε2, that allow 



  

controlling the shape curvature. As for the ellipsoid case, the 
α1, α 2 and α 3 parameters are scale factors on  x ,  y and  z  
axis respectively, Fig. 1. 

The form of (22) gives information on the position of a 
three-dimensional point, related to the super-ellipsoid 
surface, which is critical for interior/exterior determination. 
This information derives from the following critical values 
of the implicit equation:     f x, y, z( )= 1 when the point lies on 

the surface,     f x, y, z( )< 1 when the point is inside the super-

ellipsoid and     f x, y, z( )> 1 when it is outside of the super-
ellipsoid. In the case of fluorophore distribution, the 
absorption coefficient can be expressed, utilizing these 
values, as: 

 

    
μa r( )= μa

tis r( )+ cμa
fluo r( ),  c =

1,  f x, y, z( )≤ 1

0,  f x, y, z( )> 1

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (23) 

 

 
Fig. 1.  Super-ellipsoid models for various parameters values 

C. Image Formulation 
The formulation of the images, after the solution of the 

forward problem, in the case of the Diffusion 
Approximation was based on the following expression: 

 

  X r( )= U em r( ) 2R( ) (24) 
 

where   X r( ) is the measurable quantity. Within this 
formulation, losses in the imaging system are taken into 
consideration and accounted as a correlation factor. This 
factor is experimentally calculated through the system 
calibration procedure [9] [16].  

Camera calibration is the process of determining the 
internal camera geometric and optical characteristics 
(intrinsic parameters) and/or the three-dimensional position 
and orientation of the camera frame relative to a certain 
world coordinate system (extrinsic parameters) [17]. 

The most important premise for an accurate calibration is 
the correct mathematical expression of the camera model. 
Assuming telecentric lenses, the pinhole camera model [18] 
is not applicable. Telecentric lenses perform orthographic 
projection and are ideal for gauging applications, thus the 
projection of an arbitrary point     X i ,Yi , Zi( ) to the image 
plane is expressed as: 
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 (25) 

 
where the coefficients  au ,  av  and   s  are scale factors for 
transforming the image plane metric units     u i , v i( ) to image 

pixels   ′ u i , ′ v i( ) and represent the camera intrinsic parameters. 

 R = rij[ ] is the rotation matrix and   T = x0 y0 z0[ ]T
 is the 

translation matrix. These two matrices define the extrinsic 
parameters of the camera frame. Finally     X i ,Yi , Zi( ) are the 
global coordinates of the arbitrary point. 

Although telecentric lenses optically compensate for lens 
distortions, there should be taken into account at least the 
most common types of distortion, to avoid any possible lens 
construction errors [19]. The overall distortion equation is: 
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 (26) 

 
where   k1 , k2( ) are the radial distortion parameters,   p1 , p2( ) 

are the tangential distortion coefficients and  ri
2 = u i

2 + v i
2. 

Having experimentally solved the calibration problem for 
these parameters, the mapping between the global 
coordinates system to the image plane is possible, which 
means that the  X r( ) in (24) can now be expressed as 

  X u, v( ). Furthermore, the fluence values are thresholded by 
the fluorescence filters transmission factor  QE . Finally, the 
virtual image formulation is expressed as: 

 

   X r( )= QEU r( ) 2R( )→ X u, v( ) (27) 

D. Image Segmentation 
The simulated image for each measurement is pre-

processed and normalized, in order to meet the acquisition 
protocol. The pre-processing algorithms include intensity 
adjustment and contrast enhancement. The intensity 
adjustment was performed by mapping the intensity values 
of each image to new ones, between 0 (black) and 1 (white). 
Values below the low and above the high thresholds are 
clipped; that is values below the low threshold mapped to 0 
and those above the high threshold mapped to 1. Extensive 
testing revealed that the most appropriate mapping was the 
one that was weighted toward lower (darker) output values. 

An expected side effect of the intensity adjustment is the 
weakening of the region-of-interest edges. However, the 
described algorithm overcame this difficulty via 
morphological image processing. More specific, opening 



  

filter can produce a reasonable estimate of the background 
across the image, as long as the selected structuring element 
is large enough not to fit entirely within any of the objects of 
interest. Subtracting the resulted image from the restored, a 
new one with even background arises (top-hat 
transformation). Repeating the same procedure, but instead 
of opening applying the closing filter (bottom-hat 
transformation), and multiplying the outcomes, a contrast 
enhancement was succeeded. 

After the preprocessing procedure the image is ready for 
the segmentation. Simple thresholding would lead either to 
the exclusion of some features or to the region growth of 
others. On the other hand, application of any edge detection 
or segmentation algorithm would lead to falsely detected 
edges or over-segmentation. The reason is that the object in 
the images does not have sharp edges or relevant intensities. 
In order to avoid such problems, this algorithm performed a 
combination of marker-controlled watershed transformation 
and thresholding. As a result even the lowest intensity 
features were detected. 

Through this procedure, the region-of-interest from the 
simulated images was extracted. This will be the input to the 
image registration problem, where the matching between the 
acquired and the simulated data is evaluated. However, this 
matching process does not seek the entire images, but only 
the regions of interest, minimizing significantly the timing 
required to solve the inverse problem. 

III. RESULTS 
The synthetic frequency-domain fluorescence data were 

generated on a simulated 2 cm × 2 cm × 2 cm cube, with its 
center located at the origin of the coordinates system, 
illuminated by a simulated point laser beam with a Dirac 
profile at the   z = 1 plane and angular modulation frequency 
ω = 100 MHz. The refractive mismatch at the boundary of 
the region was set at     R = 2.34 and the average speed of light 
in the medium at     c = 2.55 ⋅1010  cm/s. 

Data were generated for two different super-ellipsoid 
models at two different locations. The first super-ellipsoid 
model was a sphere with diameter     r = 0.25 cm and the 
second model was an ellipsoid with x-axis diameter 0.125 
cm, y-axis diameter 0.25 cm and z-axis diameter 0.125 cm. 
These two models were firstly located at the origin of the 
coordinates system, while their second location was off-axis 
with their center located at the point   0.25, 0.25, 0.5( ).  

For the simulated absorption coefficient were chosen the 
values     μa,exc

tis = 0.023 cm-1 and     μa,em
tis = 0.0289 cm-1 for the 

background and     μa,exc
fluo = 0.5  cm-1 and     μa,em

fluo = 0.0506 cm-1 
for the fluorophore. The lifetime of the fluorophore was 
taken to be   τ = 0.56 ⋅10−9 s independent from the position 
and the quantum efficiency was   η = 0.016, to match the 
corresponding properties of the Indocyanine Green (ICG) 
dye, commonly used in experiments. Finally, the reduced 

scattering coefficient was taken as     ′ μ s = 9.84  cm-1 in both 
the target and the background, and was considered to be 
constant for both excitation and emission wavelengths.  

The region was discretized at 24576 uniformly distributed 
linear tetrahedral elements, which means a number of 4913 
nodal points. The simulations were performed at a 2.16 GHz 
Dual Core unit with 2 GB RAM and required approximately 
30 minutes for the forward solver to converge to a solution. 
In Fig. 2 the outcomes of the forward solver for the four 
cases of simulation measurements are presented as sliced 
surfaces at the  z = 1 plane. 

 
Fig. 2.  Surface slices presenting the fluence exiting the cube for the four 
cases of super-ellipsoid models. (a) and (b) show the spherical model 
located at the center of the cube (a) and off-axis (b). (c) and (d) present the 
ellipsoid model for the same locations respectively.  

 
By application of (27) the slices of Fig. 2 are transformed 

to image data and presented in Fig. 3. The calibration 
parameters that were used for this transformation have 
chosen to correspond to an 800×800 pixels camera, with the 
use of telecentric lens. The fluorescence filters transmission 
factor was set at   QE = 0.9, to correspond to most high-end 
commercial fluorescence filters at the emission wavelength 
of the ICG.  



  

 
Fig. 3. Images after application of the fluence transformation. (a) and (b) 
show the spherical model located at the center of the cube (a) and off-axis 
(b). (c) and (d) present the ellipsoid model for the same locations 
respectively.  

 
Fig. 4 shows the restored images after the preprocessing 

algorithms. The difference between Fig. 3 and Fig. 4 is 
obvious. The region-of-interest in Fig. 4 is well determined 
and the contrast enhancement presents high levels. 

 
Fig. 4.  Restored images after application of the preprocessing algorithms. 
(a) and (b) show the spherical model located at the center of the cube (a) 
and off-axis (b). (c) and (d) present the ellipsoid model for the same 
locations respectively. 

 
Finally, in Fig. 5 the segmented images are presented. 

Comparing Fig. 4 and Fig. 5 one can notice the accurate 
segmentation that the custom watershed transformation has 
achieved.  

 
Fig. 5.  Segmented images (a) and (b) show the spherical model located at 
the center of the cube (a) and off-axis (b). (c) and (d) present the ellipsoid 
model for the same locations respectively. 

 
Through this point the extraction of the intensity 

histogram and the geometrical properties of the region-of-
interest is possible, which will conclude to a more feasible 
comparison between real and simulated images.  

IV. CONCLUSION 
In this paper a new method for the processing of the 

forward solver outcomes in fluorescence molecular imaging 
has been presented. This method is based on computer 
vision algorithms and succeeds to isolate the region-of-
interest from the noisy background, a very important aspect 
for the convergence of the inverse problem.  

Another important aspect of this work is the introduction 
of the super-ellipsoids as the simulation models. With only 
eleven parameters, an excessively large number of tumour 
simulations can result automatically and the required initial 
values of the fluorophore distribution to be available. This is 
of great importance as the lack of these values is mostly 
responsible for the time consuming iterations during the 
solution of the inverse problem. 
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