
  

  

Abstract— Investigation of the significance of metabolites’ 
peak area ratios derived from brain Magnetic Resonance 
Spectroscopic Imaging (MRSI) spectra, in brain tumors 
classification, has been applied. Results have shown that in 
most binary classifications using SVM and LSSVM classifiers, 
the accuracy achieved was greater than 0.90 AUC except the 
case of Gliomas grade 2 vs Gliomas grade 3 where 0.84 AUC 
was recorded due to the great heterogeneity of these two types 
of tumor. The minimum but also biologically significant set of 
features (markers), where maximum AUCs recorded, was 
derived. Ratios of N-acetyl-aspartate, Choline, Creatine and 
Lipids metabolites found to play the most crucial role in brain 
tumors discrimination. The biological importance of these 
markers was also verified by literature. Finally the influence of 
four magnetic resonance image (MRI) intensities on the 
classification process was also measured. It was found that 
MRI data do not improve significantly the classification 
accuracies.      

I. INTRODUCTION 
ccurate diagnosis is essential for optimum clinical 
management of patients with intracranial tumors. When 
accessible, most tumors are surgically removed, but 

there is a balance between removing as much tumor tissue as 
possible whilst maintaining vital brain functions. Therefore 
a noninvasive and accurate prediction of tumor type can 
reduce unnecessary surgical biopsy for non-cancerous 
lesions and less accessible tumors, which could be treated by 
radio- or chemo-therapy rather than surgical resection.  

1H magnetic resonance spectroscopy (or proton MRS) 
can provide information on the biochemical profile of tissue 
and is increasingly being used as a noninvasive method for 
classifying brain lesions. Earlier MRS studies show clear 
differences between the 1H spectra of brain tumors and 
normal brain tissue [1], [2].  There are two methods of 
proton magnetic resonance spectroscopy, namely single 
voxel and multivoxel, with or without spectroscopic 
imaging. MRS or single voxel spectroscopy acquires one 
signal from a certain volume element (voxel), while MRSI 
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or multi voxel spectroscopy acquires simultaneously signals 
from a two dimensional grid of voxels. MRSI can facilitate 
the identification of heterogeneity of a tumorous region, 
since spatial variations of the tissue characteristics can be 
assessed at metabolite level. For each voxel, the intensity of 
the biochemically relevant metabolites can be determined as 
shown in Fig. 1. MRSI has large potential for clinical 
applications as it provides spectroscopic as well as spatial 
information of the brain tissue. 

 

 
 
Fig. 1. Interpretation of a voxel to its spectrum. Y axis: peak 
heights (metabolites concentration). X axis: frequency 
(position) in parts per million. Cho = Choline, Cre = 
Creatine, NAA = N-acetyl-aspartate, Lac = Lactate. 
  

The acquisition of the patient’s metabolic spectra enables 
the determination of several types of features that can be 
used for brain tumor classification purposes. These may be 
the metabolites amplitudes, the area under the metabolites 
peaks (red area in Fig. 1) or even the ratios of the 
metabolites peak areas. 

  The main goal of this work is to rigorously study the 
potential of MRSI information and identify the smallest 
possible set of biologically significant features (markers) 
from brain metabolites’ spectra in order to accurately 
classify different types of labeled brain tumors. Towards this 
direction, ratios of metabolite peak areas were used, which 
are extracted from twelve well known brain metabolites. 
Ratio type features have been successfully used in studies 
over the last decade concerning the discrimination of brain 
tumors type, grade and heterogeneity [3]-[7]. Measuring 
peak area ratios of metabolites has the advantage of 
canceling out the effects of general reduction in measured 
metabolite concentrations, which are due to variations in 
cellular density. Most of these studies though, involve only 
ratios of two or three known metabolites, like NAA (N-

Identification of significant Metabolic Markers from MRSI data for 
Brain Cancer Classification 

M. G. Kounelakis, M. E. Zervakis, M. E. Blazadonakis, G. J. Postma, L. M. C. Buydens, A. Heerschap 
and X. Kotsiakis 

A 



  

acetyl aspartate), CHO (Choline) and CRE (Creatine) and 
none of them combines MRI data in the classification 
process. 

 The novelty of our approach is in the way we exploit 
multiple ratio features within a multimodal framework. First, 
we extended the idea of ratio type features, by constructing a 
feature set that includes 31 unique peak area ratios stemming 
from the biological significance of metabolites. Using then 
combinations of these 31 features, 5 more feature sets are 
also built in order to reveal any possible intrinsic metabolite 
variations that could assist more accurate brain tumor 
discrimination. Furthermore, MRI features that come from 4 
imaging intensities are combined with the above ratio 
features in order to measure their influence in the 
classification process.  

In the sequel we test pattern recognition methods for 
feature selection and classification purposes. The dataset and 
methods used are discussed in Section II, while the results 
are presented in Section III. Section IV elaborates on the 
findings and Section V concludes this paper. 

II. MATERIALS AND METHODS 

A. Materials 
The dataset consists of magnetic resonance imaging 

(MRI) data and short echo magnetic resonance spectroscopy 
imaging (MRSI) data from 24 patients and 4 control 
volunteers. From these patients, 21 have been diagnosed 
with a glial brain tumor of specific grade and 3 with 
meningiomas.  

The MR data was collected by the Radboud University 
as part of INTERPRET (http://carbon.uab.es/INTERPRET) 
project and contains T1-weighted, T2-weighted, proton 
density (PD) weighted images and gadolinium-enhanced 
(GD) T1-weighted images, as well as water suppressed and 
unsuppressed 1H-MRSI spectral images (two-dimensional 
MRSI data). The core dataset [8] consists of 669 pre-
processed spectral sets containing data (MRI as well as 
MRS) from 669 voxels of 24 brain tumour patients and 4 
healthy persons. Each patient case passed strict quality 
control and validation procedures, including consensus 
histopathologic determination. Per tissue type voxels are 
taken from homogeneous regions. 

More specifically, the set contains the following 
information. 
(1) Healthy tissue from volunteers: normal tissue from 
healthy persons (4 patients), 
(2) Healthy tissue from patients: apparently normal tissue 
from the contralateral half of the brain of patients (4 
patients), 
(3) Cerebro spinal fluid (CSF): CSF from patients, where the 
ventricles were clearly visible and the voxels were located as 
far from the tumour as possible (10 patients). 
(4) Grade 2 gliomas: diffuse astrocytomas (5 patients), 
oligodendrogliomas (2 patients), and mixtures (3 patients), 
(5) Grade 3 gliomas: anaplastic astrocytomas (1 patient), 
oligodendrogliomas (2 patients), and undefined (1 patient), 
(6) Grade 4 gliomas: glioblastomas (7 patients), 

(7) Meningiomas (3 patients). 
Design of binary classifications  

For the needs of this study, nine binary classification 
schemes were constructed as shown in Table I. These 
classification schemes were selected owing to their clinical 
importance. 

CSF voxels were removed from the classification process 
since they can be easily discriminated from other tissues, so 
they have no clinical interest. 

TABLE I 
BINARY CLASSIFICATION SCHEMES 

Classes Patients Voxels 

Healthy vs Tumor 8 vs 24 218 vs 351 
Healthy vs Glio 8 vs 21 218 vs 303 

Healthy vs MNG 8 vs 3 218 vs 48 
GR2 vs GR3 10 vs 4 176 vs 57 
GR2 vs GR4 10 vs 7 176 vs 70 
GR3 vs GR4 4 vs 7 57 vs 70 
GR2 vs MNG 10 vs 3 176 vs 48 
GR3 vs MNG 4 vs 3 57 vs 48 

GR4 vs MNG 7 vs 3 70 vs 48 

Glio = Gliomas (sum of GR2, GR3 and GR4), MNG = Meningiomas, GR2 
= Gliomas Grade 2, GR3 = Gliomas Grade 3, GR4 = Gliomas Grade 4. 

 
Construction of feature sets  

In this study, two input feature ensembles were used, (a) 
six sets of metabolites’ peak areas ratios (Table II) and (b) 
the set of 4 imaging intensities mentioned above. The 
imaging intensities were also combined with the six ratio 
sets. Ratios of metabolites’ peak areas were measured within 
each voxel independently, not in relation to healthy tissue. 

The metabolites’ peak areas from the MR spectrum were 
obtained by peak integration [8], from the following spectral 
regions: TCreatine (Cre1 at 3.95 ppm), Glutamate (Glu1 at 
3.75 ppm), Myo-inositol (Mi at 3.56 ppm), 
Glutamate/Glutamine (Glx at 3.44 ppm), Choline (Cho at 
3.20 ppm),  Creatine (Cre at 3.02 ppm), Glutamine (Glu2 at 
2.20 ppm), N-acetyl aspartate (NAA at 2.02 ppm), Alanine 
(Ala at 1.48 ppm), Lactate (Lac at 1.33 ppm), Lipids1 (L1 at 
1.30 ppm) and Lipids2 (L2 at 0.90 ppm). Only the spectral 
values in the region of interest (0.5–4.0 ppm) were used as 
input features. In this region the metabolites’ peaks can be 
easily measured. 

 
TABLE II 

RATIOS’ SETS 

Ratios’ Sets Number of features 

Ratios set 1 10 
Ratios set 2 10 
Ratios set 3 13 
Ratios set 4 15 
Ratios set 5 21 
Ratios set 6 (union of Ratios’ sets 1 to 5) 31 

B. Methods 
Towards the identification of a minimum number of input 

features that produce the best classification of available 
samples, an RFE-SVM strategy was employed, which has 



  

been applied to microarray genomic data with remarkable 
results [9]. In particular, we use a variant of this scheme that 
embeds a Fisher’s filter criterion within the operation of the 
SVM classifier [10]. This criterion shown in equation 1, 
focuses only on the support vectors by ranking their input 
features as: 
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where )()( ii xx −+ − μμ  and )()( ii xx −+ + σσ  are the 

mean and standard deviation values of feature ix  in the 
positive and negative classes, respectively. The features with 
the smallest Fisher’s value are eliminated and the most 
significant ones are kept for classification purposes. A brief 
presentation of the pseudocode of this method is presented 
below. 

 
Feature selection and classification pseudocode 
1. Let n be the initial number of input features 
Loop:  
2. While ( 0≥n ) 
3. Create and train the SVM classifier using any type of 
kernel. 
4. Locate the Support Vectors (SVs). 
5. Based on the Support Vectors only rank the features 
according to the value returned by Fisher criterion. 
6. Remove the feature with the smallest Fisher metric, in 
absolute value. More than one feature can be removed in 
each iteration. 
7. Estimate the classification accuracy of the n surviving 
features using a linear SVM classifier. 
8. End While (end of Loop) 
9. Output as significant features the set of surviving features 
achieving the best classification accuracy. 
 

For classification purposes, both the SVM classifier and 
its least squares variant (LS-SVM) [11] were tested. In both 
cases the Radial Basis Function (RBF) kernel was selected, 
since it is considered a good choice when multidimensional 
and heterogeneous data are under scrutiny, like the case of 
Brain tumors we investigate. The parameters of RBF kernels 
(gamma, sigma) were tuned in such a way that the smallest 
possible number of support vectors would be retained for 
training purposes, as to avoid overtraining. 
 
Classifier performance evaluation 

The 10-Ford cross validation (CV) and Leave-Patients-
Out CV strategies were tested. In 10-Fold CV, 100 stratified 
random splits of each dataset were created. Train sets 
contained 90% of the voxels of each of the two classes 
(binary classification) and the remaining 10% of these two 
classes were contained in the test sets. In Leave Patients Out 
CV, the test sets were constructed based on the principle that 
every patient from each class would be contained at least 
once in the test sets, so that the entire dataset could be tested 
at least once. 

III. EXPERIMENTAL RESULTS 
Accuracy measurements were obtained using the global 

metric representing the Area under the Receiver Operating 
Characteristic curve (AUROC). Confidence intervals (CI) 
were also estimated for statistical purposes. The results 
obtained using the Ratios’ sets as inputs into the feature 
selection and classification process are presented in Table III 
below. 

 
TABLE III 

MAXIMUM AUC MEASURED USING RATIOS SETS 

Feature Set Ratios of Metabolites Peak Areas 

Classifier 
evaluation 10-Fold CV Leave Patients Out CV  

Feature 
selection  SVM  LS-

SVM SVM LS-SVM CI 

Healthy vs 
Tumor 0.99 / 6 0.98 / 9 0.97 / 5 0.98 / 8 0.004 

Healthy vs 
Glio 0.99 / 5 0.99 / 9 0.98 / 8 0.98 / 6 0.005 

Healthy vs 
MNG 0.98 / 2 0.98 / 4 0.90 / 9 0.97 / 13 0.009 

GR2 vs 
GR3 0.84 / 8 0.84 / 9 0.78 / 7 0.63 / 12 0.028 

GR2 vs 
GR4 0.99 / 4 0.99 / 5 0.99 / 4 0.97 / 4 0.004 

GR3 vs 
GR4 0.98 / 2 0.98 / 2 0.97 / 3 0.97 / 1 0.013 

GR2 vs 
MNG 0.92 / 7 0.92 / 8 0.89 / 10 0.84 / 10 0.022 

GR3 vs 
MNG 0.92 / 2 0.94 / 7 0.81 / 8 0.83 / 8 0.015 

GR4 vs 
MNG 0.90 / 5 0.90 / 6 0.86 / 2 0.89 / 2 0.018 

Numbers in bold present the maximum AUC measured. The number at 
the right side of the backslash symbol corresponds to the number of features 
where the maximum AUC was recorded, i.e. the most significant features. 

 
The identities of the most significant features (markers) 

are shown in Table IV. These markers were also ranked 
according to their frequency of appearance in the feature 
selection and classification process. Feature ranking is based 
on the number of times in a 100 runs process (100 stratified 
random splits) a feature is weighted as significant and it is 
also depicted in Table IV.  

Ratios of the metabolites’ peak areas provide quite 
satisfactory results in most binary classifications. The 10-
Fold CV method gives better AUROC results compared to 
the Leave Patients Out method. The SVM prediction model 
appears to be the best choice for such binary classifications.  

More specifically, in Healthy vs Tumor, Gliomas and 
MNG the accuracy measures achieved are very high (greater 
than 0.98). It is also observed that in Healthy vs Tumor case 
the number of features needed to achieve 0.99 AUROC is 6, 
which is a bit larger than the other two tests. This is 
reasonable since Tumor class contains both Gliomas and 
Meningiomas. It is also remarkable the fact that only 2 
features can discriminate Healthy vs MNG. 
 



  

TABLE IV 
MOST SIGNIFICANT FEATURES FOR EACH BINARY CLASSIFICATION SCHEME 

LIPS = L1+L2, S = sum of the 12 metabolites peak areas. 
 
In the cases of Gliomas, the accuracy measures again take 

high values with a small number of features, except for the 
case of GR2 vs GR3 where AUROC is 0.84. This is 
explained due to the fact that these two classes present great 
heterogeneity as mentioned above. Finally, in Gliomas vs 
MNG cases, the accuracy measures are quite high but the 
number of features needed is increased. This is also 
expected since the MNG class involves only 3 patients, 
which makes the training of the classifier and the feature 
selection process more complex.  

Adding the image features into the process of feature 
selection and classification, the maximum AUROC’s are 
lower compared to those obtained without image features, as 
indicated in Table V. We now apply the SVM and LS-SVM 
classifiers, but with input features set to the most significant 
ratio features already derived (and shown in Table V) 
together with the image features from T1, T2, PD and GD 
imaging intensities. In most binary classification schemes 
there is either a decrease in the AUROC value or an increase 
in the number of significant features. This fact shows that 
image features can not improve the discrimination of brain 
tissues. 

Another important issue concerns the statistical 
significance of the features selected as most important. 
Towards this direction, the mean value of each significant 
ratio feature in each class was estimated. The results are 
illustrated in Fig. 2 below. Blue bars represent the mean 
value of each feature in one class and the red ones represent 
the mean value in the other class. Statistical analysis was 
applied using SPSS version 16.0 software tool.  

As we can see from this analysis the ratios NAA/CHO, 
CHO/CRE and LIPS/CHO contribute in the discrimination 
of Healthy from all Tumors (Gliomas, MNG) and 
LAC/CRE, ALA/CRE ratios in Healthy from Gliomas. MI/S 
and NAA/S ratios are able to discriminate Healthy from  
 

 
MNG. LIPS/CRE, LIPS/CHO, LAC/CRE and NAA/CRE 
clearly differentiate in GR2 and GR3 classes and CRE/S, 
CHO/S and MI/S assist the classification between GR2 and 
GR4 but also GR3 and GR4. Finally ALA/S, ALA/CRE, 
NAA/CHO and MI/S ratios are important in Gliomas vs 
MNG classification. 

 
TABLE V 

MAXIMUM AUC USING MOST SIGNIFICANT FEATURES FROM THE 
RATIOS SETS WITH IMAGE FEATURES 

Feature Set Most significant features with Image features 
 (T1, T2, PD, GD) 

Classes Max AUC CI 
Healthy vs Tumor 0.99 / 8 0.004 
Healthy vs Glio 0.97 / 5 0.008 
Healthy vs MNG 0.98 / 2 0.012 
GR2 vs GR3 0.82 / 8 0.027 
GR2 vs GR4 0.99 / 4 0.004 
GR3 vs GR4 0.97 / 2 0.016 
GR2 vs MNG 0.86 / 9 0.025 
GR3 vs MNG 0.91 / 5 0.019 
GR4 vs MNG 0.85 / 9 0.029 

 

NAA / CHO CHO /CRE CHO / S NAA / CRE LIPS/CHO NAA / S

 
 

(a) Comparison of the means in Healthy vs Tumor  

Binary  
schemes Most frequent features at max AUC Max 

AUC 
Healthy vs 
Tumor NAA/ CHO  CHO/ CRE  CHO/ S NAA/ CRE LIPS / CHO NAA / S   0.99 

Healthy vs 
Glio NAA / CHO CHO / CRE CHO / S  LAC / CRE  ALA / CRE MI / S   0.99 

Healthy vs 
MNG MI / S NAA / S       0.98 

GR2 vs 
GR3 LIPS / CRE CRE / S LIPS / CHO LAC / CRE ALA / CRE MI / S ALA / S NAA/ CRE 0.84 

GR2 vs 
GR4 CRE / S CHO / S MI / S ALA / S     0.99 

GR3 vs 
GR4 CHO / S MI / S       0.98 

GR2 vs 
MNG NAA / CHO ALA / CRE GLU1 / GLU2 L1 / CRE NAA / CRE MI / CRE GLX / CRE  0.92 

GR3 vs 
MNG ALA / S NAA / CHO MI / S LAC / CHO MI / CHO NAA / S CHO / S  0.94 

GR4 vs 
MNG NAA / CHO LIPS / CHO NAA / S LAC / CRE ALA / S    0.90 

Ranking 1st 2nd 3rd 4rth 5th 6th 7th 8th  
Rank most frequent to less frequent features (from left to right). Frequency of appearance was measured at each run (100 runs) 



  

NAA/ CHO CHO/ CRE CHO / S LAC / CRE ALA / CRE MI / S

 
 

(b) Comparison of the means in Healthy vs Gliomas  
 

MI / S NAA / S

 
 

(c) Comparison of the means in Healthy vs Meningiomas  
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(d) Comparison of the means in GR2 vs GR3  
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(e) Comparison of the means in GR2 vs GR4  
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(f) Comparison of the means in GR3 vs GR4  
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(g) Comparison of the means in GR2 vs Meningiomas  
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(h) Comparison of the means in GR3 vs Meningiomas  
 

NAA/ CHO LIPS / CHO NAA / S LAC / CRE ALA / S

 
 

(i) Comparison of the means in GR4 vs Meningiomas  
 

Fig. 2. Comparison of the means of the most significant ratio 
features in each classification scheme. Blue bars correspond 
to the first type of tumor and red to the second one. 

IV. DISCUSSION 
Support Vector Machines using 10-Fold CV provide the 

best classification accuracy results in most binary 
classification schemes. This is expected due to the fact that 
Leave Patients Out CV approach excludes the data from at 
least one patient from the training phase, rendering the 
testing process more difficult. This is more obvious for the 
GR2 vs GR3 scheme, were the number of patients of GR3 is 
very small and there is great heterogeneity between these 
tumor types. 

In Healthy vs Tumor, Healthy vs Gliomas and Healthy 
vs MNG classifications it is observed that NAA, CHO and 
CRE play a very important role. Even more, LIPS, LAC, 
CRE and CHO have significant contribution in gliomas 
discrimination. Finally, ALA, NAA and CHO and CRE 
assist the discrimination of gliomas versus meningiomas. 
The behavior of these metabolites is also verified in the 
literature [12], [13].  

Comparing the means of these markers it is also obvious 
that NAA and CRE decrease in Tumors, while CHO 
increases. Lipids and LAC show a significant increase in 
Gliomas. Also ALA Lipids increase in Meningiomas.  

Adding image features derived from T1, T2, PD and GD 
imaging modalities did not improve the classification 
results. Furthermore, it was observed that even when an 
increase in the accuracy was reported with the use of 
imaging features, the number of total features required for 
maximizing AUROC was significantly increased.   

V. CONCLUSIONS 
The present study reveals that 1H MRSI is an important 

adjunct to the clinical imaging modalities for non-invasive 
diagnosis of viable tumours. For most cases, binary 
classification based on metabolic information from MRSI 
provides good diagnostic results. Furthermore, the ratios of 
metabolites’ peak areas can assist the diagnosis of Brain 
tumor types and reveal intrinsic characteristics of this 
complex disease.  
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