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Abstract— To achieve increased throughput, amplification of
multiple DNA sequences is often performed using a single
Polymerase Chain Reaction (PCR) called Multiplex PCR (MP-
PCR). Successful MP-PCR requires efficient methods for se-
lecting sets of synthetic oligonucleotides called primers that
collectively amplify all DNA loci of interest. Since the potential
for forming primer-dimer pairs and unintended amplification
products increases with the number of primers, a common
optimization objective is to minimize the number of primers
required to amplify all targets. Significant reductions in the
number of required primers can be achieved by using primers
with degenerate bases, or degenerate primers. The problem
of selecting the minimum number of degenerate primers
that amplify a given set of loci, referred to as the Multiple
Degenerate Primer Selection Problem (MDPSP) has received
much attention from researchers in the past few years. Since
several variants of the problem have been proved to be NP-
Complete, research has focused on heuristic algorithms that
perform well on real biological data. In this paper, we present
two new greedy algorithms for MDPSP, analyze their time
and space complexities and compare their performance on
random and real biological data with that of two previously
reported algorithms. Our results show that the execution time
and memory requirement of proposed algorithms is less than
of existing algorithms, thus enabling the processing of larger
input sets. Also, the new algorithms eliminate the dependency
of the previous algorithms on an empirical input parameter
that affects the runtime and quality of output. The software is
downloadable at http://www.engr.uconn.edu/˜sub02005/software.html

I. INTRODUCTION

PCR is a fundamental technique in molecular biology used
to amplify a given double-stranded DNA molecule into an
exponential number of copies. The PCR reaction requires
two synthetic oligonucleotides, called forward and reverse
primers, typically 15-30 nucleotides in length, that are essen-
tially substrings of the 5’-3’ sequence upstream of the desired
amplification locus on each of the two DNA strands. MP-
PCR [3] is an advanced technique used to amplify several
DNA loci in a single experiment. This requires the presence
of forward and reverse primers for each of the DNA loci to
be amplified, though primers can be shared between differ-
ent loci. Undesired events such as mispriming and primer
dimerization may occur in an MP-PCR experiment due to
the presence of large numbers of primers, thus compromising
the quality of PCR products. Hence, it is critical to minimize
the number of primers employed in MP-PCR. This can be
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achieved by selecting primers that act as forward and/or
reverse primers for multiple amplification targets. To further
reduce the number of primers and increase the amount of
primer sharing between target loci, an effective method is
to use primers with multiple nucleotides at certain positions,
commonly referred to as degenerate primers [4].

The total degeneracy of a degenerate primer p, denoted as
dp, is defined as the product of the numbers of nucleotides
at each of its positions. Thus, if p = p1 . . . pl is a degenerate
primer of length l, the total degeneracy of p is dp = Πl

i=1|pi|.
Since highly degenerate primers have low specificity and
can lead to a large number of mispriming events, it is
common to impose an upper bound on the degeneracy of
the primers to be used in a MP-PCR reaction. Therefore,
the goal is to identify a set of degenerate primers, each of
a specified length l and of total degeneracy at most d, that
collectively cover all 5’-3’ DNA sequences upstream of the
given amplification targets. A degenerate primer p is said
to cover a DNA sequence s if one of the d non-degenerate
primers represented by p is a substring of s. Formally, the
problem can be stated as follows:

Multiple Degenerate Primer Selection Problem (MDPSP):
Given n DNA sequences S = {S1, S2, ..., Sn}, and two
integers l and d, find a minimum cardinality set of degenerate
primers Pd that covers S, such that each degenerate primer
p ∈ Pd is of length l and has total degeneracy at most d.

MDPSP was proved to be NP-Complete in [6]. Therefore,
in this paper we focus on heuristic algorithms for MDPSP
with good practical performance. The rest of the paper
is organized as follows. Most of the MDPSP heuristics
proposed in the literature select degenerate primers one at
a time, attempting at each step to maximize the coverage
of the selected degenerate primer, i.e., the number of not-
yet-covered sequences that it covers. In Section II-A, we
review existing heuristic algorithms for MDPSP, discussing
the salient ones in more detail. In Section II-B, we describe
the two new greedy algorithms for MDPSP and analyze
their running time. Finally, we give experimental results
comparing the solution quality and runtime of proposed
algorithms to that of two best performing previous algorithms
in Section III. Section IV concludes the paper.

II. METHODS
A. Algorithms for Degenerate Primer Selection

The first efforts of reducing the number of primers for
multiple DNA sequence amplification by identifying com-
mon substrings in a subset of the input came from Pearson et
al. in [8], where the authors designed a set of non-degenerate
primers using a greedy set cover algorithm and an exact



branch-and-bound algorithm. Linhart and Shamir pioneered
the work on degenerate primer design in [7], proposing
the HYDEN algorithm for MDPSP. HYDEN designs every
degenerate primer by repeatedly solving the Maximum Cov-
erage Degenerate Primer Design (MC-DPD) problem on the
uncovered set of input sequences. The authors showed that
HYDEN performed well in practice when used to design
degenerate primers for a set of Human Olfactory genes that
in turn were used to extract genes of the same family from
genome data. Their elaborate work in [6] formulates and
proves several variants of Degenerate Primer Selection to
be NP-Complete. Wei, Kuhn and Narasimhan [11] proposed
the DePiCt algorithm that employs hierarchical clustering to
group a set of given protein sequences based on similarity
and designs degenerate primer pairs for each cluster from
highly conserved regions of a multiple alignment of the
sequences in the cluster.

The MIPS algorithm of Souvenir et al. [10] follows an
iterative beam search technique to design degenerate primers.
It starts with a set of primers (called 2-primers) that cover
two sequences from an input of n sequences. Then it extends
the coverage of the primers in the candidate set by one
additional sequence, introducing degeneracy in the primers
if necessary, retains a subset of these primers (the number
determined by an input parameter called beam size b) for
the next iterative step until none of the primers can be
extended further without crossing the target degeneracy. At
this point, the primer with the lowest degeneracy is selected
and the sequences that it covers are removed from the input
set. The procedure is repeated until all the sequences are
covered. MIPS has overall time complexity of O(bn3mp),
where b is the beam size, n is the number of sequences,
m is the sequence length, l is the primer length, and p
is the cardinality of the final set of selected degenerate
primers. Experimental results for varying number of input
sequences and different target degeneracy, the sequences
being uniformly distributed i.i.d. sequences of equal length,
were reported in [10]. It was shown that MIPS always
produced fewer primers than HYDEN.

The DPS algorithm in [1] follows the footsteps of MIPS
but uses additional sorting and a new ranking metric called
coverage-efficiency in each iterative step to order and select
the b best primers, thus improving the worst-case time
complexity of MIPS. DPS was shown to perform better in
practice on real biological data both in quality and runtime
when compared to MIPS.

A downside of both MIPS and DPS is that their runtime
depends upon the empirical input parameter b; the authors
of [10] suggest using a value of b close to the number of
sequences in the input to achieve a good trade-off between
solution quality and runtime. Although DPS was shown
to achieve better quality of output for lesser values of b,
its dependency on b still exists. In the following section
we propose two new greedy approaches that eliminate the
dependency on b, while improving the runtime and retaining
the quality of output. The greedy approaches avoid the time
consuming process of explicit generation of next generation

candidates from substrings of length l from all the uncovered
sequences as done by MIPS and DPS. Instead, in order
to increase coverage they identify the best candidate to
merge the primer with based on two measures, namely, the
Hamming distance of possible candidates of the input from
the primer and their potential to increase the degeneracy
of the primer, explained in detail in the next section. Also,
in order to speed up the generation of the initial set of 2-
primers, MIPS and DPS adopt a FASTA look-up approach,
which could skip some valid primer candidates because of
the mismatches between two substrings of length l being
distributed in such a way that they do not share a sufficiently
long substring. This is overcome in our greedy algorithms
by adopting an efficient technique to calculate the Hamming
distances between substrings of length l in a sequence and
those of other sequences of the input.

B. New Greedy Algorithms for MDPSP

In this section we propose two new greedy heuristics for
MDPSP, called algorithm DPS-HD (stands for Degenerate
Primer Selector by Hamming Distance) and algorithm DPS-
DIP (stands for Degenerate Primer Selector by Degenerate
Increase Potential). Similar to its predecessors, DPS-HD de-
signs members of the output set Pd one at a time, attempting
to select a degenerate primer P of maximum coverage for
the set of input sequences to be covered yet. In order to select
P , DPS-HD works as follows. Let us consider that we are
selecting the first degenerate primer of Pd. Therefore, all the
input sequences are alive (yet to be covered). An arbitrary
sequence Si, 1 ≤ i ≤ n is selected; let it be Sk. For every
u, a substring of length l (l-mer) of Sk, the following is
performed to develop u from a non-degenerate primer that
covers Sk to a degenerate primer of degeneracy at most d
to cover as many uncovered sequences as possible. First,
its Hamming distances (i.e., the number of mismatches) to
every l-mer in Si is calculated using the efficient technique
described in [9]. Let cu be a binary array of size n, whose
k-th bit is set to 1 to indicate that u covers Sk. Let D[0 : l]
be an array of linked lists, where D[h], 0 ≤ h ≤ l represents
the list that contains elements of the form (q, r), if the
Hamming distance dist(u, Sq,r..(r+l−1)) = h. D[0] contains
those elements that are sequences already covered by u,
therefore, its elements are examined one at a time, and the
q-th bit of cu is set to 1 for each additional sequence Sq

covered by u. Then, an arbitrary element from the non-empty
list of D with the lowest value of h is chosen and the l-mer
represented by the element, say v, is merged with u. cu is
updated accordingly. Let dist(u, v) = huv, 1 ≤ huv ≤ l.
The huv positions to which additional symbols are added
to u and the corresponding symbol added are maintained in
separate lists. For D[h], huv ≤ h ≤ l, the elements in the
lists are processed, creating a next generation set of candidate
sites, say D′, by recalculating the Hamming distance of l-
mers in sequences that are alive in O(nmhuv) time. This
procedure is continued until the degeneracy of u reaches
the target degeneracy d or all input sequences are covered.
The degenerate primer u with the maximum coverage is



selected as P and added to Pd. The sequences covered by P
are eliminated and the procedure is repeated until all input
sequences are covered. The pseudocode of the algorithm is
given below:

Algorithm DPS-HD {
Pd := null;
R := {1, 2, ..., n}; //sequences alive
while(|R| > 0) {

P := null;
coverageP := 0; // number of sequences covered by P
(1) Choose an arbitrary sequence k from |R|;
(2) Calculate the Hamming distance of all l-mers in Sk

with the l-mers of other sequences alive;
(3) for each l-mer u ∈ Sk do {

expand u to cover additional sequences,
by merging u with a v at a minimum
Hamming distance from it, and recalculating
Hamming distances of sites alive,
until du := d or coverageu := |R|;

if(coverageu > coverageP ) {
P := u;
coverageP := coverageu;
}

}
(4) Pd := Pd ∪ P ;
(5) Delete sequences covered by P from R;

}
output Pd;

}

Step (2) of the algorithm above that calculates the Ham-
ming distance of all the O(m) l-mers in the chosen se-
quence takes O(nm2) time and O(nm2) space, using the
technique described in [9]. A non-degenerate primer can be
expanded into a degenerate primer of degeneracy at most d
in O(|Σ| log|Σ| d) iterations (as the number of symbols that
can be added to achieve the degeneracy d is in the range
[blog2 dc : (|Σ| − 1)dlog|Σ| de]). Each expansion iteration
recalculates the Hamming distances of O(nm) candidate
sites that are alive. Therefore, the expansion of one non-
degenerate primer takes O(nm|Σ| log|Σ| d). Since O(m)
candidate l-mers are expanded in Step (3), selecting one
primer takes O(nm2|Σ| log|Σ| d) time. If |Pd| = p, then the
runtime of algorithm DPS-HD is O(nm2p|Σ| log|Σ| d) and
its space requirement is O(nm2).

The greedy approach of algorithm DPS-DIP differs from
DPS-HD by the criterion used to rank the possible primer
sites that a given primer could be merged to expand its
degeneracy and coverage, namely, the degeneracy increase
potential, defined as follows:

The degeneracy increase potential (DIP) of a primer site
v (a l-mer in a sequence yet to be covered) is the factor f of
increase in degeneracy caused by merging v with candidate
primer u. Thus, if u′ = u ∪ v, then f = du′/du.

Adopting DIP as the expansion site selection criterion is
based on the intuition that two primer sites, say x and y,
that are at the same Hamming distance from a primer u
could result in primers of different resultant degeneracy when
merged with u, depending on the positions of x and y that
differ from u. If the number of symbols in a position i of

u, 1 ≤ i ≤ l is 1, if u[i] 6= x[i], the potential increase in
degeneracy x[i] would have is 2, if |u[i]| = 2, this value
would be 1.5 and if |u[i]| = 3, it would be 1.33. The DIP
factor f of a primer site x is the product of the potential
increase of each of its positions with respect to the primer
u. Therefore, we believe that selecting the site with the least
DIP value increases u’s degeneracy by the least amount and
may yield improved overall coverage.

We use the same strategy of DPS-HD to calculate the DIP
values of primer sites. Clearly, the DIP values of primer sites
are real numbers in the range [1, 2l]. Although the array of
linked lists described above (D) cannot be used here, it can
be seen that such an array is not critical for either DPS-
HD or DPS-DIP. Since each iteration recomputes all O(nm)
DIP values, the site with the minimum DIP value can be
identified during recomputation. A DIP value of 1 indicates
the primer already covers a particular primer site (and in turn
the sequence of the input that it is a substring of). Therefore,
the runtime of DPS-DIP is still O(nm2p|Σ| log|Σ| d).

III. RESULTS

We have implemented algorithms DPS-HD and DPS-DIP
in Java and tested their performance on random and real
biological data, essentially the same datasets described in
[1]. The MIPS algorithm, implemented in C++, was obtained
from its authors and the DPS algorithm was implemented
in Java. All the implementations were run on a PowerEdge
2600 Linux server with 4 GB of RAM and dual 2.8 GHz Intel
Xeon CPUs - only one of which is used by these sequential
implementations. A comparison of the performance of MIPS,
DPS, DPS-HD and DPS-DIP is provided in Tables I-III. The
HYDEN algorithm designs primers for a given input in the
form of primer pairs, considering the 5’ end and the 3’ end
of the input dataset separately, while algorithm MIPS, DPS
and DPS-HD consider the 5’ end sequences and the reverse
complement of the 3’ end sequences together. The authors
of MIPS showed that this strategy reduced the number of
primers in the output. For the above reason, it may not be
appropriate to directly compare the performance of algorithm
HYDEN with the other algorithms. Therefore, we do not
include HYDEN in our analysis below.

Two real biological datasets were considered. The first
dataset is a set of 95 DNA sequences on which the algorithm
MIPS was tested in [10]. Each sequence in the dataset has
an SNP in it and the goal of the MP-PCR is to amplify
the regions of every sequence that would include the SNPs
in the amplified products. Thus, the input to the algorithms
was a dataset of 190 sequences, each input sequence having
two representatives in the input set, the first being the sub-
sequence from the start to one position before the SNP and
the second being the reverse complement of the subsequence
from one position after the SNP to the end of the sequence.
The second dataset is a set of 50 human olfactory genes,
which we received from the authors of algorithm HYDEN.
Each sequence in this dataset was approximately 1 Kbp long.
Taking the first 300 nucleotides and the reverse complement
of the last 300 nucleotides of each gene generated the input



TABLE I
PERFORMANCE ON RANDOM DATASETS: l = 15, d = 10000, p = # OF

PRIMERS, t = EXECUTION TIME IN SEC.
MIPS DPS DPS-HD DPS-DIP

n p t p t p t p t

20 4 1.7 4 1.7 4 1.51 4 2.97
40 6.3 9 6 11.9 6 5.41 6 10.35
60 9 26 8.3 39.1 9 11.95 9 22.40
80 11 54.1 10.8 93.2 11 20.82 11 40.30
100 13.1 100.3 12.3 179.6 13.2 32.67 13 58.35
120 15.1 180.5 14.1 316.0 15 45.44 15 83.24
140 17 218.4 16.1 499.3 17 63.02 17 110.06
160 19.2 313.8 17.8 761.1 19 80.40 19 143.27
180 21 422.8 19.5 1103.0 21 125.47 20.7 172.62

TABLE II
PERFORMANCE ON RANDOM DATASETS: l = 15, d = 100000, p = # OF

PRIMERS, t = EXECUTION TIME IN SEC.
MIPS DPS DPS-HD DPS-DIP

n p t p t p t p t

20 3 1.7 2.9 2.5 2.8 1.47 2.3 2.77
40 4 8.0 4 18.3 4 5.15 4 9.26
60 5.6 22.3 5 57.4 5.6 11.26 5.2 19.55
80 7 47.6 6 131.1 7 19.13 7 32.33
100 8 88.8 7 251.7 8 28.13 7.9 47.96
120 9 139.6 8 431.9 9 40.99 9 68.12
140 10 217.1 8.9 679.8 10 53.93 10 87.82
160 10.9 326.6 9.8 1039.9 11 68.53 11 111.17
180 11.9 435.3 10.4 1530.8 12 85.10 12 137.31

TABLE III
PERFORMANCE ON BIOLOGICAL DATASETS: l = 20, p = # OF PRIMERS, t

= EXECUTION TIME IN SEC.

Dataset Degeneracy MIPS DPS DPS-HD DPS-DIP
(d) p t p t p t p t

Olfactory 4096 11 130 9 92.1 10 13.75 9 21.75
16384 10 161 8 114.6 8 13.24 7 21.35
65536 8 197 6 152.3 6 13.64 6 21.51
262144 7 214 5 209.5 5 14.53 5 22.55

SNP 4096 55 716 53 637.5 55 28.44 54 63.88
16384 45 803 43 628.8 45 24.48 45 52.37
65536 37 882 35 755.9 38 21.77 37 45.38
262144 31 789 29 966.2 31 18.00 30 38.47

set for the experiment. Thus, the input set consisted of 100
sequences each of length 300. The length of the primer
searched was 20, the value of b = n were adopted for
MIPS and DPS and the degeneracy thresholds considered
were 4096, 16384, 65536, and 262144 respectively.

10 random datasets from [5] were used (generated from the
uniform distribution induced by assigning equal probabilities
to each nucleotide for each value of n in 20, 40, 60, 80, 100,
120, 140, 160, 180). We recorded the average over all the 10
runs for each option of n sequences. The sequence length m
was 300 for all random sequences. The value of b = n was
adopted for MIPS and DPS, the length of the primer searched
for was 15 and the experiments were run for degeneracy of
10000 and 100000 respectively.

IV. CONSLUSION

In this paper, we proposed new greedy algorithms for
the problem of selecting multiple degenerate primers for
use in MP-PCR. The proposed algorithms eliminate the
dependency of previously known algorithms on an empirical
input parameter that affects the runtime and quality of output.
The implementations of the proposed algorithms execute
faster than the previously known algorithms providing the
same quality of output on random and real biological data.
We believe that the low memory requirement and fast exe-
cution of the proposed algorithms will be useful in process-

ing very large input sets. Also, our algorithms are highly
amenable to parallelization and we plan to test if parallel
implementations lead to better output quality as the primers
could be developed from more than one arbitrary uncovered
input sequence. We are currently working on extending the
heuristics proposed in this paper to address other variants of
the degenerate primer design such as those in [2][6][7].
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