

Abstract—The discrete logarithm problem is one of the
well-known NP problems. It has important applications in such
fields as cryptography. The discrete logarithm problem is the
basis for the security of many cryptosystems including the
Elliptic Curve Cryptosystem and Diffie-Hellman protocol. In
this paper, we proposed newly developed parallel bio-molecular
logic computing algorithms based on bio-molecular logic
computing model to solve discrete logarithm problem.

I. INTRODUCTION
iffie & Hellman [1] in 1976 proposed their key exchange
protocol. The security of this protocol depends on the
discrete logarithm. Like factoring problem, the discrete

logarithm problem is believed to be difficult and to be the
hard direction of a one-way function. These two are the basis
for public key cryptography. The purpose of the algorithm
lets two parties that have no prior knowledge of each other to
jointly establish a shared secret key over an insecure
communication channel. This key can then be used to encrypt
subsequent communications using a symmetric key cipher.

Public-key cryptography based on elliptic curve over
finite fields was proposed by Miller and Koblitz in 1985.
Elliptic curves over finite fields have been used to implement
the Diffie-Hellman key passing scheme and also the elliptic
curve variant of the Digital Signature Algorithm. The security
of these cryptosystems relies on the difficulty of solving the
elliptic curve discrete logarithm problem. If P is a point with
order m on an elliptic curve, and Q is some other point on the
same curve, then the elliptic curve discrete logarithm problem
is to determine an L such that Q = LP where L is an integer
and 0 ≤ L≤ m-1. If this problem can be solved efficiently, then
elliptic curve based cryptosystems can be broken efficiently.

Feynman [2] first proposed bio-molecular computations
in 1961, but his idea was not experimented with for several
decades. In 1994 Adleman [3] succeeded in solving an
instance of the Hamiltonian path problem in a test tube by
handling DNA strands. Lipton [4] demonstrated that the
Adleman techniques could be used to solve the satisfiability
problem (the NP-complete problem). Adleman and his
co-authors [5] proposed sticker for enhancing the error rate of
hybridization.

Manuscript received July 5, 2008.
Michael (Shan-Hui) Ho is with the Department of Information

Management, Ming Chuan University, Taoyuan, Taiwan. (phone:
886-3-3507001 ext. 3408; fax: 886-3-3593875; e-mail:
mhoincerritos@yahoo.com).

Yu-Ying Shih is with Department of Graduate Institute of Industrial and
Business Management, National Taipei University of Technology, Taipei,
Taiwan. (e-mail: amy_shyy@yahoo.com.tw).

Through advances in molecular biology [6], it is now
possible to produce roughly 1018 DNA strands that fit in a test
tube. Those 1018 DNA strands can also be applied to
represent1018 bits of information. In the future (perhaps after
many years) if biological operations can be applied to deal
with a tube with 1018 DNA strands and they are run without
errors, then 1018 bits of information can simultaneously be
correctly processed. Hence, it is possible that bio-molecular
computation can provide a huge amount of parallelism for
dealing with many computationally- intensive problems in
the real world.

The fastest supercomputers can execute approximately
1012 integer operations per second. This implies that (128 ×
1012) bits of information can be simultaneously processed in a
second. The fastest supercomputers can process (128 × 1015)
bits of information in 1000 seconds. The extract operation is
one of basic biological operations of the longest execution
time. It could be approximately done in 1000 seconds [10]. In
the future (perhaps after many years) if an extract operation
can be used to deal with a tube with 1018 DNA strands and it
is run without errors, then 1018 bits of information can
simultaneously be correctly processed in 1000 seconds. If it
becomes true in the future, then basic biological operations
will perhaps be faster than the fastest super computer in the
future. In [9], it was pointed out that storing information in
molecules of DNA allows for an information density of
approximately 1 bit per cubic nm (nanometer). Videotape is a
kind of traditional storage media and its information density
is approximately 1 bit per 1012 cubic nanometers. This implies
that an information density in molecules of DNA is better
than that of traditional storage media.

II. BIO-MOLECULAR COMPUTING

A. Biological Operations of Bio-molecular Computing
A (test) tube is a set of molecules of DNA (a multi-set of

finite strings over the alphabet {A, C, G, T}). Given a tube,
one can perform the following operations:
1. Extract: Given a tube T and a short single strand of DNA,

“s”, produce two tubes + (T, s) and – (T, s), where + (T, s)
is all of the molecules of DNA in T which contain the
strand “s” as a sub-strand and – (T, s) is all of the
molecules of DNA in T which do not contain the short
strand “s”.

2. Merge: Given tubes T1 and T2, yield ∪ (T1, T2), where ∪
(T1, T2) = T1∪T2. This operation is to pour two tubes into
one, with no change of the individual strands.

Fast Parallel Bio-Molecular Logic Computing Algorithms of Discrete
Logarithm

Michael (Shan-Hui) Ho and Yu-Ying Shih

D

3. Amplify: Given a tube T, the operation, Amplify (T, T1,
T2), will produce two new tubes T1 and T2 so that T1 and T2
totally a copy of T (T1 and T2 are identical) and T becomes
an empty tube.

4. Append: Given a tube T and a short strand of DNA, “s”,
the operation will append the short strand, “s”, onto the
end of every strand in the tube T. It is denoted by append
(T, s).

5. Append-head: Given a tube T and a short strand of DNA,
“s”, the operation will append the short strand, “s”, onto
the head of every strand in the tube T. It is denoted by
append-head (T, s).

6. Detect: Given a tube T, say ‘yes’ if T includes at least one
DNA molecule, and say ‘no’ if it contains none. It is
denoted by detect (T).

7. Discard: Given a tube T, the operation will discard the
tube T. It is denoted by discard (T).

Read: Given a tube T, the operation is used to describe a
single molecule, which is contained in tube T. Even if T
contains many different molecules each encoding a different
set of bases, the operation can give an explicit description of
exactly one of them. It is denoted by read (T).

B. Optimal Bioinformatics Logic Computing System
In [12, 13], we developed a new bio-molecular logic

computing model. We use logic true tables to optimize and
complete logic bio-circuit operations that can construct most
basic DNA logic circuits. These DNA logic circuits (gates)
work in test tubes to implement basic logic operations. These
gates are AND, OR, XOR,… etc. Through these logic gates,
we construct a set of parallel bio-molecular adder, subtractor,
multiplier, and divider. In this paper, we use the new
bio-molecular logic computing model to solve the problem of
discrete logarithm. All operations of optimal bioinformatics
logic computing are shown in Figure 1.

Fig.1. Bio-molecular logic computing model

III. BIO-MOLECULAR LOGIC COMPUTING SOLUTION FOR NP
PROBLEM: DISCRETE LOGARITHM

A. Introduction of Discrete Logarithm Problem
For any integer d and any positive integer n, there are

unique integers s and r such that 0 ≤ r < n and d = s ∗ n + r.

The value s = d / n is the quotient of the division. The value r
= d mod n is the remainder of the division. We have that n | d
if and only if d mod n = 0. Given a well-defined notion of the
remainder one integer when divided by another, it is
convenient to provide special notation to indicate equality of
remainders. If (d mod n) = (b mod n), we write d ≡ b (mod n)
and say that d is equivalent to b, modulo n. In other words, d ≡
b (mod n) if d and b have the same remainder divided by n.
The integer can be divided into n equivalence classes
according to their remainders modulo n. The equivalence
class modulo n containing an integer d is [d]n = {d + h * n,
where h is an integer}. The set of all such equivalence classes
is Zn = {[d]n : 0 ≤ d ≤ n − 1}. One often sees the definition Zn
= {0, 1, … n − 1} [7].

The greatest common divisor of two integers d and n, not
both zero, is the largest of the common divisors of d and n; it
is denoted gcd(d, n). Two integers d and n are said to be
relatively prime if their only common divisor is 1, that is, if
gcd(d, n) = 1. Because the equivalence class of two integers
uniquely determines the equivalence class of their product,
thus, we define multiplication modulo n, denoted *n, as
follows: [d]n *n [h]n = [d * h]n. Using the definition of
multiplication modulo n, we define the multiplicative group
modulo n as (Zn

*, *n), where Zn
* = {[d]n ∈ Zn: gcd(d, n) = 1}.

Just as it is natural to consider the multiples of a given
element d, modulo n, it is often natural to consider the
sequence of power of d, modulo n, where d ∈ Zn: d0, d1, d2, …,
modulo n. Indexing from 0, its value in this sequence is d0
mod n = 1, and the ith value is di mod n. We denote <d> as the
subgroup of Zn

* generated by d, and we also denote ordn(d)
(the “order of d, modulo n”) as the order of d in Zn

*. For
example, <2> = {1, 2, 4} in Z7

*, and ord7(2) = 3.
If ordn(M) is equal to the number of elements in Zn

*, then
every element in Zn

* is a power of M, modulo n, and we say
that M is a primitive root or a generator of Zn

* [7]. For
example, there is a primitive root, modulo 7 and <3> = {1, 3,
2, 6, 4, 5}. If Zn

* possesses a primitive root, we say that the
group Zn

* is cyclic. If M is a primitive root of Zn
* and C is any

element of Zn
*, then there exists an e such that Me ≡ C (mod n).

This e is called the discrete logarithm of C, modulo n, to the
base M. No method in a reasonable amount of time can be
applied to solve the problem of discrete logarithm. The
following method is used to figure out Me ≡ C (mod n) [8].

Procedure Encryption(M, e, n)
(1) Let ek−1 … e0 be the binary representation of e.
(2) C = 1.
(3) For i = k − 1 down to 0
 (3a) Set C to the remainder of (C2) when divided by n.
 (3b) If ei = 1 then
 (3c) Set C to the remainder of (C * M) when divided by
n.
 EndFor
(4) Halt. Now C is the result of Me(mod n).
EndProcedure

Fig.2. Procedure Encryption(M, e, n)

B. Bio-molecular Optimization Solution for Discrete
Logarithm Problem

Assume that the length of e is k bits. Also suppose that e is
represented as a k-bit binary number, ek − 1 … e0, where the
value of each bit ej is either 1 or 0 for 0 ≤ j ≤ k − 1. The bits ek

− 1 and e0 represent the most significant bit and the least
significant bit for e, respectively. The form of an expression,
Me (mod n), can be transformed into another form: (…((1 *

1 −keM (mod n))2 * 2 −keM (mod n))2 * 3 −keM (mod n) …)2 *
0eM (mod n). In the Diffie-Hellman public-key

cryptosystem, n is a prime number. Therefore, in this paper,
we also assume that n is a prime number. Because n is a prime
number, <M> = {M0 (mod n), M1 (mod n) … Mn − 2 (mod n)}.
This is to say that 0 ≤ e ≤ n − 2. The following pseudo
algorithm is applied to solve the problem of discrete
logarithm.
Method 1: Solving the problem of discrete logarithm.
(1) All of the computation for M0 (mod n), M1 (mod n) …

Mn − 2 (mod n) are simultaneously performed on a
parallel molecular computer.

(2) For any given C, from the result finished in Step (1),
find Me ≡ C (mod n).

(3) Output(“discrete logarithm is: “, e).
EndMethod

Fig.3. Method 1: Solving the problem of discrete logarithm.

C. DNA Algorithm to Solve Discrete Logarithm Problem
The procedure, Encryption(M, e, n), denoted in

Subsection A, is used to finish computation of an exponential
modular operation. The following DNA algorithm is applied
to implement the procedure, Encryption(M, e, n).
Algorithm of Discrete Logarithm: Implementing the
procedure, Encryption(M, e, n).
(0) T0 ← ∅; Tθ ← ∅; Tn ← ∅; T1 ← ∅.
(1) Init(T0, k).
(2) SelectDiscreteLogarithm(T0, Tθ, k).
(3) MakeValue(Tn, k).
(4) InitialValue(T0, k).
(5) For j = k − 1 down to 0

(5a) ModularMultiplication(T0, Tn, (2 * (k − 1 − j))*
 (4 * k + 1) + 1, 2 * (k − j), C, C).
(5b) T0 = +(T0, ej

1) and T1 = −(T0, ej
1).

(5c) ModularMultiplication(T0, Tn, (2 * (k − 1 − j)+ 1)
 * (4 * k + 1) + 1, 2 * (k − j) + 1, C, M).
(5d) For r = 0 to 4 * k

(5e) ReservedValue(T1, (2 * (k − 1 − j) + 1) * (4
 * k + 1) + r).

EndFor
(5f) AssignmentOperator(T1, (2 * (k − 1 − j) + 1) * (4
 * k + 1) + 1 + 4 * k, 2 * (k − j) + 1).

(5g) T0 = ∪(T0, T1).
EndFor
EndAlgorithmOfDiscreteLogarithm

Fig.4. Algorithm of Discrete Logarithm
Theorem 1: From those steps in Algorithm of Discrete

Logarithm, the problem of discrete logarithm can be solved.
Proof:

From the execution of Step (0), tubes T0, Tθ, Tn, and T1
are set to empty tubes. On the execution of Step (1), it calls
Init(T0, k) to construct solution space for 2k possible discrete
logarithms. This means that tube T0 includes strands encoding
2k possible discrete logarithms. Next, the execution of Step (2)
calls SelectDiscreteLogarithm(T0, Tθ) to perform selection
of legal discrete logarithms with its range is from 0 to n − 2.
This implies that those legal discrete logarithms are encoded
in tube T0. On the execution of Step (3), it calls
MakeValue(Tn) to encode a prime number, n. This indicates
that tube Tn contains a strand encoding it. Next, the execution
of Step (4) calls InitialValue(T0) to finish the execution of
Step (2) in the procedure, Encryption(M, e, n). This is to say
that the initial value for C is set to one.

Step (5) is a loop and is mainly used to finish the function
of the only loop (Step (3)) in the procedure, Encryption(M, e,
n). Next, the first execution of Step (5a) calls
ModularMultiplication(T0, Tn, (2 * (k − 1 − j))* (4 * k + 1) +
1, 2 * (k − j), C, C) to perform Step (3a) in Encryption(M, e,
n). On the first execution of Step (5b), it employs the extract
operation to form two tubes: T0 and T1. The first tube T0
includes all of the strands that have ej = 1. The second tube T1
consists of all of the strands that have ej = 0. This indicates
that the execution of the step finishes Step (3b) in
Encryption(M, e, n). Because the jth bit of e encoded in tube
T0 is one, next, the first execution of Step (5c) calls
ModularMultiplication(T0, Tn, (2 * (k − 1 − j)+ 1) * (4 * k +
1) + 1, 2 * (k − j) + 1, C, M) to perform Step (3c) in
Encryption(M, e, n). Since the jth bit of e encoded in tube T1
is zero, Step (5d) is the loop and is mainly used to maintain
the consistency of the intermediate value for Y. On the first
execution of Step (5e), it calls ReservedValue(T1, (2 * (k − 1
− j) + 1) * (4 * k + 1) + r) to copy the current intermediate
value of Y to the next intermediate value of Y. Repeat to
execute Step (5e) until the value of r reaches (4 * k). Next, the
first execution of Step (5f) calls AssignmentOperator(T1, (2
* (k − 1 − j) + 1) * (4 * k + 1) + 1 + 4 * k, 2 * (k − j) + 1) to
perform updating of the value for C. Because the jth bit of e
encoded in tube T1 is zero, the updated value of C is still equal
to the previous value.

On the first execution of Step (5g), it uses the merge
operation to pour tube T1 into T0. Repeat execution of Steps
(5a) through (5g) until the value of j is zero. After all of the
steps are processed, every strand in tube T0 performs
computation of an exponential modular operation, Me (mod
n). This implies that Algorithm of Discrete Logarithm
performs Step (1) of Method 1. Therefore, the discrete
logarithm problem can be solved from those steps in
Algorithm of Discrete Logarithm. In the following section,
we will describe, in detail, the various modules that are
combined to form the overall DNA-based algorithm for
solving the discrete logarithm problem.

D. Solution Space for Ordern(M)
Because Ordern(M) is equal to n − 1, suppose that n − 1 is

represented as a k-bit binary number, θk − 1 … θ0, where the
value of each bit θj is either 1 or 0 for 0 ≤ j ≤ k − 1. The bits θk

− 1 and θ0 are used to represent the most significant bit and the
least significant bit for n − 1, respectively. From [9, 10], for
every bit θj, two distinct 15 base value sequences are
designed. One represents the value “0” for θj and the other
represents the value “1” for θj. For the sake of convenience in
our presentation, assume that θj

1 denotes the value of θj to be
1 and θj

0
 defines the value of θj to be 0. The following

algorithm, SelectDiscreteLogarithm(T0, Tθ), is proposed to
construct a DNA strand for encoding n − 1 and select legal
discrete logarithms.

Procedure SelectDiscreteLogarithm(T0, Tθ, k)
(1) For j = 0 to k − 1

(1a) Append-head(Tθ, θj).
EndFor

(2) For j = k − 1 down to 0
(2a) T0

ON = +(T0, ej
1) and T0

OFF = −(T0, ej
1).

(2b) Tθ
ON = +(Tθ, θj

1) and Tθ
OFF = −(Tθ, θj

1).
(2c) If (Detect(Tθ

ON) = = true) then
(2d) T0

= = ∪(T0
=, T0

ON) and T0
< = ∪(T0

<,
 T0

OFF).
Else

(2e) T0
> = ∪(T0

>, T0
ON) and T0

= = ∪(T0
=,

 T0
OFF).

EndIf
(2f) Tθ = ∪(Tθ

ON, Tθ
OFF).

(2g) Discard(T0
>).

(2h) T0 = ∪(T0, T0
=).

EndFor
(3) Discard(T0).
(4) T0 = ∪(T0, T0

<).
EndProcedure

Fig.5. Procedure SelectDiscreteLogarithm(T0, Tθ, k)

E. Solution Space for MODULE n
Assume that the length of n denoted in Subsection A is k

bits. Also suppose that n is represented as a k-bit binary
number, nk − 1 … n0, where the value of each bit nj is either 1 or
0 for 0 ≤ j ≤ k − 1. The bits nk − 1 and n0 represent the most
significant bit and the least significant bit for n, respectively.
From [9, 10], for every bit nj, two distinct 15 base value
sequences are designed. One represents the value “0” for nj
and the other represents the value “1” for nj. For the sake of
convenience in our presentation, assume that nj

 1 denotes the
value of nj to be 1 and nj

 0
 defines the value of nj to be 0. The

following algorithm, MakeValue(Tn), is proposed to
construct a DNA strand for encoding n.

Procedure MakeValue(Tn, k)
(1) For j = 0 to k − 1

(1a) Append-head(Tn, n j).
EndFor
EndProcedure

Fig.6. Procedure MakeValue(Tn, k)

F. Solution Space for a Primitive Root M and the Result of
an Exponential Modular Operation C

Suppose that the length of a primitive root M for Zn
* is k

bits. Also assume that M is represented as a k-bit binary
number, mk − 1 … m0, where the value of each bit mj is either 1
or 0 for 0 ≤ j ≤ k − 1. The bits mk − 1 and m1 represent the most
significant bit and the least significant bit for M, respectively.
From [9, 10], for every bit mj, two distinct 15 base value
sequences are designed. One represents the value “0” for mj
and the other represents the value “1” for mj. For the sake of
convenience in our presentation, assume that mj

 1 denotes the
value of mj to be 1 and mj

 0
 defines the value of mj to be 0.

Assume that the length of C, the result of an exponential
modular operation denoted in Subsection A, is k bits. From
the procedure Encryption(M, e, n), C is finally obtained after
at most updating (2 * k + 1) times of the value for C.
Therefore, suppose that C is represented as a k-bit binary
number, ca, k − 1 … ca, 0, where the value of each bit ca, j is either
1 or 0 for 1 ≤ a ≤ (2 * k + 1) and 0 ≤ j ≤ k − 1. The bits, ca, k − 1
and ca, 0, represent the most significant bit and the least
significant bit for C, respectively. The first k-bit binary
number, c1, k − 1 … c1, 0, is used to represent the initial value to
C. The last k-bit binary number, c(2 * k + 1), k − 1 … c(2 * k + 1), 0, is
used to represent the final result of C. For other k-bit binary
numbers, they are applied to represent the intermediate
computed form of C. From [9, 10], for every bit ca, j, two
distinct 15 base value sequences were designed. One
represents the value “0” for ca, j and the other represents the
value “1” for ca, j. For the sake of convenience in our
presentation, assume that ca, j

 1 denotes the value of ca, j to be 1
and ca, j

 0
 defines the value of ca, j to be 0. The following

algorithm is used to construct solution space for the initial
value for C and the primitive root M.
Procedure InitialValue(T0, k)
(1) For j = 0 to k − 1

(1a) Append-head(T0, mj).
EndFor
(2) Append-head(T0, c1, 0

 1).
(3) For j = 1 to k − 1

(3a) Append-head(T0, c1, j
 0).

EndFor
EndProcedure

Fig.7. Procedure InitialValue(T0, k)

G. Algorithm of a Modular Multiplication
The procedure, Encryption(M, e, n), denoted in

Subsection A, is used to finish computation of an exponential
modular operation. In the procedure, it uses successive
operations of square and multiplication to perform the
exponential modular operation. We now give details of the
ModularMultiplication(T0, Tn, f, a, α, β) module used by the
main algorithm. The following DNA-based algorithm,
ModularMultiplication(T0, Tn, f, a, α, β), is applied to
perform all of the steps to a modular multiplication. This
implies that Steps (3a) and (3c) in the procedure,
Encryption(M, e, n), are performed through the following
DNA-based algorithm, ModularMultiplication(T0, Tn, f, a,

α, β). The two parameters, α and β, in
ModularMultiplication(T0, Tn, f, a, α, β) represent the
multiplicand and the multiplier of a modular multiplication.
Assume that βj

1 is applied to represent the value of “1” for the
jth bit of the multiplier (β).
Procedure ModularMultiplication(T0, Tn, f, a, α, β)
(1) InitialSet(T0, f).
(2) For j = k − 1 down to 0

(2a) ParallelLeftShifter(T0, f + (k − 1 − j) * 4).
(2b) ParallelComparator(T0, Tn, T0

>, T0
=, T0

<, f + (k −
 1 − j) * 4 + 1).
(2c) T0 = ∪(T0

>, T0
=).

(2d) ParallelSubtractor(T0, T0, T f + (k − 1 − j) * 4 + 1).
(2e) ReservedValue(T0

<, f + (k − 1 − j) * 4 + 1).
(2f) T0 = ∪(T0, T0

<).
(2g) T0 = +(T0, βj

1) and T1 = −(T0, βj
1).

(2h) If (Detect(T0) = = true) then
(2i) ParallelAdder(T0, T f + (k − 1 − j) * 4 + 2, T a).
(2j) ParallelComparator(T0, Tn, T0

>, T0
=, T0

<,
 f + (k − 1 − j) * 4 + 3).
(2k) T0 = ∪(T0

>, T0
=).

(2l) ParallelSubtractor(T0, T0, T f + (k − 1 − j) * 4 +

 3).
(2m) ReservedValue(T0

<, f + (k − 1 − j) * 4 +
 3).
(2n) T0 = ∪(T0, T0

<).
 EndIf

(2o) If (Detect(T1) = = true) then
(2p) ReservedValue(T1, f + (k − 1 − j) * 4 + 2).
(2q) ReservedValue(T1, f + (k − 1 − j) * 4 + 3).

 EndIf
(2r) T0 = ∪(T0, T1).

EndFor
(2s) AssignmentOperator(T0, f + k * 4, a).

EndProcedure.
Fig.8. Procedure ModularMultiplication(T0, Tn, f, a, α, β)

H. Solution Space for the Initial Value to Computation of a
Modular Multiplication

For any given two positive integers d and b, Blakley
[11] proposed the fastest method to perform computation of
(d * b) (mod n). Blakley used adder and subtractor of (4 * k)
times to perform computation of (d * b) (mod n). Assume that
Y ≡ (d * b) (mod n) and the length of Y is k bits. From
Blakley’s method, Y is finally obtained after at most updating
(4 * k + 1) times of the value for Y. From the procedure
Encryption(M, e, n), Blakley’s method is at most called (2 *
k) times. That is to say, at most updating (8 * k2 + 2 * k) times
of the value for Y are completed. Therefore, suppose that Y is
represented as a k-bit binary number, yf, k − 1 … yf, 0, where the
value of each bit yf, g is either 1 or 0 for 1 ≤ f ≤ (8 * k2 + 2 * k)
and 0 ≤ g ≤ k − 1. The bits, yf, k − 1 and yf, 0, represent the most
significant bit and the least significant bit for Y, respectively.
If updating of fth time for Y is finished through an adder, then
two binary numbers yf, k − 1 … yf, 0 and yf + 1, k − 1 … yf + 1, 0
represent the augend and the sum of the fth updating,
respectively. If updating of fth time for Y is finished through a

subtractor, then two binary numbers yf, k − 1 … yf, 0 and yf + 1, k −

1 … yf + 1, 0 represent the minuend and the difference of the fth
updating, respectively.

From [9, 10], for every bit yf, g, two distinct 15 base value
sequences were designed. One represents the value “0” for yf,

g and the other represents the value “1” for yf, g. For the sake of
convenience in our presentation, assume that yf, g

 1 denotes the
value of yf, g to be 1 and yf, g

 0
 defines the value of yf, g to be 0.

The following algorithm is used to construct solution space
for the initial value to computation of a modular
multiplication.
Procedure InitialSet(T0, f)
(1) For g = 0 to k − 1

(1a) Append-head(T0, yf, g
 0).

EndFor
EndProcedure

Fig.9. Procedure InitialSet(T0, f)

I. Reserving the Result to Intermediate Computation of a
Modular Multiplication

The procedure, Encryption(M, e, n), denoted in
Subsection A, is applied to perform computation of an
exponential modular operation. The following DNA-based
algorithm, ReservedValue(T2, f), is employed to reserve the
result to intermediate computation of a modular
multiplication.
Procedure ReservedValue(T2, f)
(1) For j = 0 to k − 1

(1a) T3 = +(T2, yf, j
1) and T4 = −(T2, yf, j

1).
(1b) Append-head(T3, yf + 1, j

 1).
(1c) Append-head(T4, yf + 1, j

 0).
(1d) T2 = ∪(T3, T4).

EndFor
EndProcedure

Fig.10. Procedure ReservedValue(T2, f)

J. Construction of Assignment Operator
An assignment operator is an instruction of the first

operand of k bits and the second operand of k bits that the
value of the first operand is set to the value of the second
operand. The following algorithm is applied to construct an
assignment operator. This implies that the assignment
operator can be used to update the value of C denoted in
Subsection G. The third parameter, a, in the algorithm is used
to represent the ath updating for C.
Procedure AssignmentOperator(T0, f, a)
 (1) For j = 0 to k − 1

(1a) T1 = +(T0, yf, j
1) and T2 = −(T0, yf, j

1).
(1b) Append-head(T1, ca, j

1).
(1c) Append-head(T2, ca, j

0).
(1d) T0 = ∪(T1, T2).

 EndFor
EndProcedure

Fig.11. Procedure AssignmentOperator(T0, f, a)

K. The Attacking Plan of Breaking the Diffie-Hellman
Public-key Cryptosystem

The Diffie-Hellman public-key cryptosystem can be

used to encrypt messages sent between two communicating
parties so that an eavesdropper who overhears the encrypted
messages will not be able to decode them. Assume that the
public key between two parties is represented as a k-bit binary
number, c(2 * k + 1), k − 1 … c(2 * k + 1), 0, denoted in Subsection G.
An eavesdropper only uses the following algorithm to figure
out the corresponding secret key.
Algorithm: The attacking plan of breaking the
Diffie-Hellman public-key cryptosystem.
(1) Call Algorithm of Discrete Logarithm.
(2) For j = 0 to k − 1

(2a) T1 = +(T0, c(2 * k + 1), j) and T2 = −(T0, c(2 * k + 1), j).
(2b) T0 = ∪(T0, T1).

EndFor
(3) If (Detect(T0) = = true) then

(3a) Read(T0).
EndIf

EndAlgorithm
Fig.12. Algorithm: The attacking plan of breaking the Diffie-Hellman

public-key cryptosystem

L. Complexity Assessment
Theorem 2: Suppose that the length of a secret key (discrete
logarithm) in the Diffie-Hellman public-key cryptosystem is
k bits. Its public-key cryptosystem can be broken with O(k3)
biological operations proposed by Adleman [3, 9, 10] from
solution space.
Proof: Refer to Algorithm of Discrete Logarithm.

Theorem 3: Suppose that the length of a secret key (discrete
logarithm) in the Diffie-Hellman public-key cryptosystem is
k bits. The Diffie-Hellman public-key cryptosystem can be
broken with O(2k) library strands from solution space.
Proof: Refer to Algorithm of Discrete Logarithm.

Theorem 4: Suppose that the length of a secret key (discrete
logarithm) in the Diffie-Hellman public-key cryptosystem is
k bits. The Diffie-Hellman public-key cryptosystem can be
broken with O(1) tubes from solution space.
Proof: Refer to Algorithm of Discrete Logarithm.

Theorem 5: Suppose that the length of a secret key (discrete
logarithm) in the Diffie-Hellman public-key cryptosystem is
k bits. The Diffie-Hellman public-key cryptosystem can be
broken with the longest library strand, O(k3), from solution
space.
Proof: Refer to Algorithm of Discrete Logarithm.

IV. CONCLUSIONS
The number of steps any classical computer requires in

order to find discrete logarithm of a k-bit increases
exponentially with k, at least by means of using algorithms [3]
known at present. In this paper, Our molecular discrete
logarithm algorithm demonstrates how basic biological
operations can be used to solve discrete logarithm problem
with O(k3) biological operations. It can simultaneously deal
with 21024 bit information to find the discrete logarithm of

1024 bits used in the Diffie-Hellman public-key
cryptosystem. Due to current technical difficulties, the
proposed algorithm currently does not in fact find the discrete
logarithm of 1024 bits. This implies that if a molecular
computer is really constructed in the future (perhaps after
many years), then our discrete logarithm algorithm has very
high feasibility for solving the discrete logarithm problem.

REFERENCES
[1] Diffie W., and Hellman M., “New directions in cryptography,” IEEE

Transaction on Information Theory, IT-22, 6, 1976, pp. 644-654.
[2] R. P. Feynman. "In minaturization," D.H. Gilbert, Ed., Reinhold

Publishing Corporation, New York, 1961, pp. 282-296.
[3] L. Adleman, “Molecular computation of solutions to combinatorial

problems,” Science, 266:1021-1024, Nov. 11, 1994.
[4] R. J. Lipton, “DNA solution of hard computational problems,” Science,

268:542:545, 1995.
[5] S. Roweis, E. Winfree, R. Burgoyne, N. V. Chelyapov, M. F. Goodman,

Paul W.K. Rothemund and L. M. Adleman, “A sticker based model for
DNA computation,” 2nd annual workshop on DNA Computing,
Princeton University. Eds. L. Landweber and E. Baum, DIMACS:
series in Discrete Mathematics and Theoretical Computer Science,
American Mathematical Society, 1999, pp. 1-29.

[6] J. Watson, N. Hoplins, J. Roberts, A. Gann, M. Levine, and R. Losick,
Molecular Biology of the Gene, Benjamin/Cummings Menlo Park CA,
1987.

[7] Koblitz N., “A course in number theory and cryptography,”
Springer-Verlag, 1987, ISBN 0387942939.

[8] Rivest R. L., Shamir A., and Adleman L. 1978. “A method for obtaining
digital signatures and public-key cryptosystem,” Communication of the
ACM, Volume 21, pp. 120-126.

[9] Braich R. S., Johnson C., Rothemund P. W. K., Hwang D., Chelyapov
N., and Adleman L. M., “Solution of a satisfiability problem on a
gel-based DNA computer,” Proceedings of the 6th International
Conference on DNA Computation in the Springer-Verlag Lecture Notes
in Computer Science series, 2000, pp. 27-41.

[10] Adleman L. M., Braich R. S., Johnson C., Rothemund P. W.K., Hwang
D., and Chelyapov N., “Solution of a 20-variable 3-SAT problem on a
DNA computer,” Science, Volume 296, Issue 5567, 2002, pp. 499-502.

[11] Blakley G. R., “A computer algorithm for calculating product AB
modulo M,” IEEE Transaction on Computer, Vol. c-32, No. 5,1983, pp
497-500.

[12] Yu-Ying Shi, Michael(Shan-Hui) Ho, Yu-Jen Wang, and Chun-Yu
Huang, “Constructing bio-molecular parallel adder and multiplier with
basic logic operations in the Adleman-Liption model,” in ICSC &ISIS,
2008 (Submitted for publication).

[13] Yu-Ying Shi, Michael(Shan-Hui) Ho, Chun-Yu Huang, and Yu-Jen
Wang, “Constructing bio-molecular parallel subtractor and divider with
basic logic operations in the Adleman-Liption model,” in ICSC &ISIS,
2008(Submitted for publication).

