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Abstract— We consider complex mathematical models that
are characterized by a wide spectrum of time scales, the fastest
of which are operative during the initial state only, leaving
the slower ones to drive the system at later times. It is shown
that very useful physical understanding can be acquired if the
fast and slow dynamics are first separated and then analyzed.
Existing algorithmic methodologies can be applied for this
purpose. A demonstration of this approach is presented for
a glycolysis model, the solution of which asymptotically evolves
around a limit cycle.

I. INTRODUCTION

The increasing complexity of the mathematical models in
biology and genetics demand the development of algorithmic
tools for the acquisition of the desired physical understanding
[1]-[3].

For that purpose, a number of methodologies have been
developed in order to construct reduced models that retain
the significant features of the full model. Such algorithms
have recently been employed successfully for the analysis of
a large number of problems [4]-[11].

Reduction is mainly based on the development of very
fast time scales, which quickly become exhausted, allowing
slower scales to characterize the evolution of the physical
process; i.e. they do not affect the progress of the system but
they simply constrain its motion in a low dimensional space.
This situation is usually defined as stiffness [12] and the low
dimensional space, where the system evolves according to
the slow time scales, is defined as a manifold [13]-[14].

Reduction algorithms on the basis of time scale gaps
provide either both the manifold and the model governing
the slow evolution [15]-[19] or simply the manifold [20]-
[21]. These algorithms provide either leading order accuracy
[17]-[18] or higher order accuracy in an iterative fashion
[15]-[16], [19]-[21]; the measure of accuracy provided by
the size of the gap between the fast and the slow time scales.
Excellent reviews of such algorithms can be found in Refs.
[22]-[23].

Here, the CSP algorithm [15]-[16] will be employed for
the analysis of a model that describes the glycolysis of
intact yeast cells as a homogeneous two-phase (intracellu-
lar/extracellular) system [24]-[25]. It will be shown that sig-
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TABLE I
REACTIONS IN THE DETAILED MODEL [24]

1 ↔ Glcx

2 Glcx ↔ Glc
3 Glc + ATP → G6P + ADP
4 G6P ↔ F6P
5 F6P + ATP → FBP + ADP
6 FBP ↔ GAP + DHAP
7 DHAP ↔ GAP
8 GAP + NAD+ ↔ BPG + NADH
9 BPG + ADP ↔ PEP + ATP

10 PEP + ADP → Pyr + ATP
11 Pyr → ACA
12 ACA + NADH → EtOH + NAD+

13 EtOH ↔ EtOHx

14 EtOHx →
15 DHAP + NADH → Glyc + NAD+

16 Glyc ↔ Glycx

17 Glycx →
18 ACA ↔ ACAx

19 ACAx →
20 ACAx + CN−x →
21 ↔ CN−x
22 G6P + ATP → ADP
23 ATP → ADP
24 ATP + AMP ↔ 2 ADP

nificant physical knowledge can be obtained by identifying
the processes contributing the most to the fast and slow
dynamics of the model; in particular here in the development
of the manifold.

II. THE GLYCOLYSIS MODEL

Oscillations in yeast glycolysis have been observed for
several decades and models of the glycolytic pathway were
developed since the 1960s. We focus on the full-scale model,
developed by Hynne et al [24], that involves 24 reactions
among 22 metabolites (see Table I). It is assumed that
CSTR conditions prevail in which glucose, cyanide and a
suspension of starved yeast cells flow into the reactor at
a constant rate; the volume remaining fixed by removing
the surplus liquid. Under these conditions, the governing
equations are of the form:

dy
dt

= Q−1
(
S1F

1 + ... + SNFN
)

= g(y) (1)

where the elements of the N-dim. column vector y are the
concentrations of the metabolites, the N-dim. column vector
Sk and the scalar F k denote the stoichiometric vector and
rate, respectively, of the k-th reaction; N=22 for the model
considered. The N × N matrix Q is diagonal, its entries
equaling either unity for the intracellular metabolites or the



ratio of the extracellular volume to the total volume of
intracellular cytosol, yvol, for the extracellular ones. After an
initial transient, system (1) exhibits a stationary or oscillatory
(limit cycle) state, depending on the values of the parameters
and the initial conditions.

Here the values of the parameters and ICs in [24] are
employed; in particular the values of mixed flow glucose and
cyanide concentrations [Glcx]o = 24.0mM and [CN+

x ]o =
5.60mM and of the ratio yvol = 59, for which the system
eventually evolves well into the oscillatory state regime. This
behavior is displayed in Figs. 1 and 2 for the evolution
of concentration of intracellular acetaldehyde (ACA) and
nicotinamide adenine dinucleotide (NADH); the behavior of
the other metabolites being similar. It can easily be observed
that the oscillatory motion is characterized by a frequency
ωch = 2π/T = 10min−1, approximately.
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Fig. 1. The evolution of the NADH and ACA concentrations (mM) with
time (min). On the right, magnification when fully oscillatory motion is
established.

Fig. 2 shows that the oscillatory motion develops as
various transient components die-out. As it is demonstrated
in Fig. 3, fully oscillatory motion is established at sufficiently
long times .

Along the trajectory past the initial transient, the rate of
change of the concentration of various metabolites is much
smaller than the magnitude of the reaction rates contributing
to these rates of change. The magnitude of the occurring
cancellations is demonstrated in Fig. 4 for the metabolites
BPG and AMP , the governing equations of which are:

d[BPG]
dt

=
(
R8f −R8b

)
−

(
R9f −R9b

)
(2)

d[AMP ]
dt

= −
(
R24f −R24b

)
(3)

where Rkf and Rkb denote the forward and backward
rate of the k-th reaction, the expressions of which are taken
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Fig. 2. The trajectory on the [NADH] - [ACA] and the [Glc] - [ATP]
planes, during the period 0 < t < 150 min. On the right, magnification in
the region where fully oscillatory motion is established.
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Fig. 3. The trajectory on the [NADH] - [ACA] and the [Glc] - [ATP]
planes, during the period 450 < t < 500 min.

from [24]. Comparing the magnitude of the reaction rates
and that of the rate by which the concentrations change,
Fig. 4 shows that significant cancellations are taking place
among the forward and backward rates of Reactions 8 and 9
and of Reaction 24, resulting in a evolution of [BPG] and
[AMP ], respectively, much slower than that suggested by
the magnitude of each of the rates involved.

Such cancellations are produced by the action of fast
dissipative time scales, much faster than the characteristic
ones of the system’s behavior, in developing a number of
equilibria (equal to the number of fast time scales) among
various processes in the model that are mostly affected by
these scales. The effect of these time scales in establishing
equilibria and confining the evolution of the system within
these equilibria becomes stronger as the gap with the charac-
teristic (slower) time scales increases. Fast dissipative time
scales relate to the largest in magnitude eigenvalues of the
system’s Jacobian, J = grad(g), the real part of which is
negative and much larger than the imaginary part.

In the problem considered here, at each point in time the
first 10 eigenvalues with the largest magnitude are real and
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Fig. 4. The evolution of the rate of change of BPG and AMP
concentrations (mM/min) with time (min) along with that of the related
reaction rates.

negative; the next two forming a complex pair. The evolution
of the real and imaginary parts of this eigenvalue pair is
displayed in Fig. 5. It is shown that the imaginary part
dominates the real part and is approximately equal to the fre-
quency of the oscillatory motion, λi = O(ωch = 10min−1).
Since the corresponding time scale can be considered as the
characteristic of the system, these findings suggest that the
maximum number of equilibria that can be established by
fast dissipative time scales is ten.
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Fig. 5. The evolution in time (min) of the real (black) and imaginary (red)
parts of the complex eigenvalue pair, λ11,12 = λr ± iλi (min−1).

The k-th timescale is introduced here as:

τk =
(√

λ2
kr + λ2

ki

)−1

(4)

where the eigenvalue is defined as λk = λkr + iλki; the
subscripts ”r” and ”i” denoting real and imaginary parts,
respectively. Fig. 6 displays the evolution of the twelve
fastest time scales, where τ11 = τ12 is considered the
characteristic time scale of the system’s evolution. It is shown
that a large gap develops between τ1 and τ2; the gap between
τ10 and τ11 being relatively small.

The usefulness of these fast time scales in producing a
reduced model describing the slow oscillatory motion, see
in Fig. 1, will be discussed next, after a brief presentation
of the CSP method.

III. THE CSP METHOD

According to the CSP method [15]-[16], [26]-[30], Eq. (1)
is cast in the form:

dy
dt

= a1f
1 + a2f

2 + ... + aN−1f
N−1 + aNfN (5)
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Fig. 6. The evolution in time (min) of the twelve fastest timescales.

where ak and fk denote the CSP basis N-dim. column
vector and amplitude, respectively, of the k-th mode. The
amplitudes are defined as:

fk = bk • g(y) (6)

where the dual N-dim. row vectors bk satisfy the orthog-
onality condition bk •an = δk

n. Assuming that the M fastest
time scales are of dissipative nature and are much faster than
the rest, Eq. (5) can be cast as:

dy
dt

= arfr + asfs (7)

where the terms arfr (fast modes) and asfs (slow modes)
relate to the M fast and K = N − M slow, respectively,
time scales. The various quantities in Eq. (7) are defined as:

ar =
(

a1 .. aM

)
br =

 b1

:
bM

 (8)

as =
(

aM+1 .. aN

)
bs =

 bM+1

:
bN

 (9)

fr = br • g(y) =

 f1

:
fM

 (10)

fs = bs • g(y) =

 fM+1

:
fN

 (11)

When the fast dissipative times scales become exhausted, the
corresponding amplitudes become negligibly small:

fr ≈ 0 (12)

so Eq. (7) simplifies to:

dy
dt

≈ asfs (13)

denoting that the system evolves on a N−M -dim. manifold
according to the slow time scales within the confines defined
by the equilibration of the fast processes, Eq. (12); the later
imposed by the action of the exhausted fast dissipative time
scales. For the glycolysis model considered here, N = 22
and, as was discussed previously, Mmax = 10.



The slow modes include the, so-called, conservation
modes, which relate to infinitely slow time scales due to
conservation laws; having no contribution to the system’s
evolution. For the glycolysis model considered here, there
exist two conservation modes originating from the constraints
[NAD+] + [NADG] = const and [ATP ] + [ADP ] +
[AMP ] = const. These modes produce the row vectors,
say, b21 and b22, which produce f21 ≡ 0 and f22 ≡ 0.
Such vectors are constructed as follows. The elements of
b21 are all zero, except those which correspond to the
concentrations [NAD+] and [NADG], which are set equal
to one. Similarly, the elements of b22 are all zero, except
those which correspond to the concentrations [ATP ], [ADP ]
and [AMP ], which are also set equal to one. In essence,
these two conservation laws state that the detailed model,
Eq. (1) evolves inside an - effectively - 20-dim. space.

The CSP basis vectors, ak and bk, are computed using two
iterative procedures [15]-[16]. The br-refinement increases
iteratively the accuracy by which the manifold, as expressed
by Eq. (12), is approximated by increasing the accuracy of
the set of basis vectors br. Each br-refinement yields:

fk+1,r = ε fk,r (14)

where fk,r = bk,r • g(y) and ε = τM/τM+1 < 1 provides
a measure of the fast/slow time scales gap [15]-[16], [28].
The ar-refinement guarantees that only slow time scales are
encountered in the simplified model, Eq. (13); one such
refinement being adequate [28]-[29].

Given that the simplified model is valid as long as the
fast components are negligible, the M fast time scales are
declared exhausted when:

τM+1arfr < εrel y + εabs (15)

where εrel and εabs denote the relative and absolute error
allowed along a slow time step. It follows that the accuracy
of simplified model Eq. (13) depends on both:
• the size of the gap among the fast and the slow time

scale, as indicated by the magnitude of ε, and
• the number of br-refinements employed.
Next, it will be demonstrated that the size of the reduced

model is directly related to the desired accuracy, the fast/slow
time scales gap and the number of br-refinements employed.

IV. THE DIMENSION OF THE FAST SUBSPACE

Figs. 7, 8 and 9 show the evolution of the fast amplitudes,
fk where k = 1,M , for the cases M = 6, 8 and 10,
respectively, when employing one and two br-refinements.

In particular, Fig. 7 shows that when setting M = 6
a O(10−2) error will be committed by rendering to the
reduced model, if one br-refinement is employed. This
error reduces to O(10−3), with an additional br-refinement.
Similarly, Fig. 8 shows that a M = 8 reduced model
produces O(10−1) and O(10−2) errors when employing one
and two, respectively br-refinements. A somewhat smaller
error reduction is produced by an additional br-refinement
for the M = 10 case, as shown in 9, the reduced model
providing the most a O(10−1) accuracy.
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Fig. 7. M=6. The evolution in time (min) of the six fast CSP amplitudes;
top: one br-refinement, bottom: two br-refinements.
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Fig. 8. M=8. The evolution in time (min) of the eight fast CSP amplitudes;
top: one br-refinement, bottom: two br-refinements.

These findings are in very good agreement with the fact
that the time scales gap in the three cases considered, ε6 =
τ6/τ7, ε8 = τ8/τ9 and , ε10 = τ10/τ11 are all about O(10−1).

If one is interested in a O(10−3) accuracy, the M = 6
reduced model seems adequate; the maximum reduction
of M = 10 requiring more than two br-refinements to
meet this goal. In the following, the M = 8 case will be
considered, which provides a O(10−2) accuracy with only
two br-refinements; the reduced model constructed with an
additional one ar-refinement.
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Fig. 9. M=10. The evolution in time (min) of the ten fast CSP amplitudes;
top: one br-refinement, bottom: two br-refinements.

V. CSP DIAGNOSTICS ON THE MANIFOLD

For the M = 8 case, the manifold is described by eight
equations of the form:

fk = bk • g(y) = qk
1fR1f + .. + qk

24fR24f

(16)
+ qk

1bR
1b + .. + qk

24bR
24b ≈ 0

where the second equality follows from Eq. (1), qk
if =

−qk
ib = bkQ−1Si and k = 1,M . Each of these equations

relates to a (usually small) number of variables, which are
affected the most by the corresponding fast time scale and
at the same time exhibit a strong influence to the terms
participating in the occurring cancellations [27], [32]. These
variables can be identified with the help of the CSP Pointer
[26]-[27], [31]:

Dk = diag
[
akbk

]
=

[
a1

kbk
1 , ... , aN

k bk
N

]
(17)

where a1
kbk

1 + ... + aN
k bk

N = 1. Values of ai
kbk

i close to
unity indicate that the i− th variable is strongly connected
to the k − th CSP mode. The non negligible values of the
CSP Pointer for the 8 fast modes are displayed on Table II,
at t = 150min; a point in time where all these modes are
considered exhausted. It is shown that the 1st mode points to
BPG, the 2nd mode points to GAP , the 3rd mode points to
both AMP and ADP , the 4th mode points to PEP , the 5th

mode points to F6P , the 6th mode points to NADH and to
a lesser degree to NAD+, the 7th mode points to DHAP
and the 8th mode points to ACA; all these variables related
the most to the fast dynamics of the problem.

Experience shows that when the CSP Pointer identifies a
single variable (as in all, except the 3rd and 6th, modes), the
related constraint, Eqs. (16), resembles a quasi steady state
approximation (QSSA), while when more than one variable

TABLE II
THE CSP POINTER FOR THE 8 FASTEST MODES (t = 150min)

1 2 3 4 5 6 7 8
BP G 0.99
GAP 0.93 0.03 0.03
AMP 0.53 -0.01 0.02
P EP 0.03 0.94 0.02
F6P 0.90

NADH 0.01 0.58 0.09
DHAP 0.01 0.10 0.74
ACA 0.01 0.02 0.96
Clc

EtOH
Glcx
AT P 0.05
G6P 0.09
ADP 0.41 0.01
F BP 0.01 0.03 0.10

NAD+ 0.21 0.01 0.02
P yr

EtOHx
Glyc

Glycx
ACAx 0.01

CN
−
x

are identified the constraint resembles a partial equilibrium
approximation (PEA) [30].

This situation can be clarified by noting that in each
of Eqs. (16) only a relatively small number of reactions
participate in the occurring cancellations. These reactions
can be identified with the CSP Participation Index [26]-[27],
[31]:

P k
i =

qk
i Ri∑24

j=1 |qk
jfRjf |+

∑24
s=1 |qk

jbR
jb|

(18)

where k denotes the k− th of the Eqs. (16), i denotes the
forward or backward direction of the 24 reactions considered
here, and by definition P k

1 + ... + P k
48 ≈ 0 and |P k

1 |+ ... +
|P k

48| = 1. As a result, a relatively large value of P k
i indicates

a large contribution of the i − th reaction to the k − th
constrain. Consider for example the 3rd mode, for which the
CSP pointer identifies AMP and ADP as variables related
to a possible PEA. Using the CSP Participation Index and
considering terms that produce |P 3

i | > 0.02, the amplitude
of the mode at t=150min simplifies to:

f3 = q3
9fR9f + q3

24fR24f + q3
9bR

9b + q3
24bR

24b ≈ 0 (19)

the RHS of which equals 0.76 10−2 with one br-refinement
and 0.44 10−4 with two. The Participation Indices are:

P 3
9f = 0.08 P 3

24f = −0.40 P 3
9b = −0.06 P 3

24b = 0.40

These findings suggest that the relation f3 ≈ 0, being one
among the eight describing the manifold, is indeed related
to the equilibration of reaction 24, which involves both
the pointed variables AMP and ADP . However, additional
reactions have a smaller but significant influence, notably
reaction 9 which involves ADP . The influence of this
reaction on the shape of the manifold is displayed in Fig. 10,
where [AMP ] vs [Glc] is shown, computed with the original
rate R9f and a perturbed one 1.05 ∗R9f .

It is shown that a 5% perturbation in a term contributing
8% percent in the occurring cancellations inside f3 ≈ 0
produces an equivalent response of O(0.4%) in displacing
the manifold.
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VI. CONCLUSIONS

Using a glycolysis model, a first demonstration was pro-
vided on how useful the analysis of a complex and stiff
mathematical system can be if its fast and slow dynamics
are examined separately.

Here only the fast dynamics, which are responsible for
the development of the manifold, were discussed. Along
similar lines can be discussed the slow dynamics which are
responsible for the motion on the manifold.
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