
  

  

Abstract— We present a registration method for medical 
images based on shape information and voxel intensities.  First, 
we segment volume images using the Markov random field and 
the Gibbs distribution. We extract the 3D feature points of the 
shape from the surface of the segmented object. Then, we 
conduct first registration using ordinary Procrustes analysis for 
two sets of 3D feature points. For the second registration, we 
define the new optimization measure of registration as the 
entropy of the bivariate normal kernel density for pairs of 
intensities given from the extracted feature points as well as the 
transformed feature points. The final registration for two 
volume images is carried out by finding the appropriate 
transformation parameter yielding the minimum value of this 
optimization measure. To evaluate the performance of the 
proposed registration method, we conduct various experiments 
comparing our method with existing ones such as the Mutual 
Information measure.    

I. INTRODUCTION 

EDICAL image registration is a newly emerged task      
in medical image processing is used to match two 

independently acquired images. To register medical images, 
the geometrical relationship between them is determined 
using various spatial alignment methods. Matching all of the 
geometric data available for a patient provides better 
diagnostic capability, better understanding of data, and 
improves surgical and therapy planning and evaluation. The 
imaging modalities are acquired by tomography modalities 
including CT (computed tomography), MRI (magnetic 
resonance imaging), X-ray, US (ultrasound), and PET 
(positron emission tomography).  

Generally, registration algorithms in medical images can 
be broadly classified into three regions. These criteria can be 
landmark-based, segmentation-based, and intensity-based [1] 
[2] [3]. Landmark-based registration uses salient features 
selected by the user. These features are usually points but can 
also be lines or more complex structures such as corners. 
Since the number of identified features is sparse compared to 
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the image content, landmark-based methods are fast to 
compute. The major drawback is that this method requires 
user interaction to locate the landmarks.  

Segmentation-based methods attempt either rigid or 
deformable alignment for two binary structures obtained by 
segmentation [4]. The segmented structure of one image can 
be aligned either to a segmented structure on the second 
image or to the whole unsegmented second image. In the 
latter case, the criteria typically require that the boundary of 
the binary structure matches to the edges in the second images. 
Due to reduction of information, segmentation-based 
methods are faster than methods using full image content. On 
the other hand, one of the drawbacks of segmentation-based 
methods is that the performance of the registration relies on 
the accuracy of the segmentation pre-processing step. 

Intensity-based methods operate directly on the image 
intensity. They are more flexible than landmark-based or 
segmentation-based methods as they use all of the available 
information without previous reduction of data either by the 
user or by a segmentation algorithm. These methods are 
typically automatic. However, using full image contents is 
computationally very expensive especially for 3D images and 
hence may not be suited to time-constrained applications. 
There have been many research efforts on the registration 
methods using image intensities. In many cases, registration 
optimum measures often use Mutual Information (MI) or the 
maximum likelihood (ML) which are based on the pixel 
intensity of the registered image [5][6][7][8][9]. The MI, 
originating from information theory, is a measure of 
statistical dependency between two data sets. It is particularly 
suitable for the registration of images from the same or 
different modalities. Also, with a ML approach to image 
registration we assume that the pixel values in two images for 
the registration are probabilistically related. When the 
likelihood has its maximum value, the two images are 
considered to be registered. 

In this paper, we propose a new registration method 
combining the segmentation-based approach and the 
intensity-based approach. First, we segment two images 
using Markov random field model and Gibbs distribution. 
Next, we extract the feature points from the segmented 
images, and then we apply an ordinary Procrustes analysis 
(OPA) to two sets of extracted feature points to conduct the 
initial registration. Second, we define the new optimization 
measure of registration as the entropy of the bivariate normal 
kernel density (EBND) computed from the image intensities 
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of corresponding voxels in both the reference and floating 
images. If the reference and floating images are geometrically 
aligned, this measure will take a minimum value. Finally, we 
conduct various experiments to assess the accuracy and 
precision of our method by comparing the EBND based 
registration with the MI based registration. 

II. SEGMENTATION USING MARKOV RANDOM FIELD MODEL 
AND GIBBS DISTRIBUTION  

The Markov random field (MRF) is a class of statistical 
models that describe contextual constraints [10] [11]. It can 
be interpreted as a generalization of the Markov chain models, 
which describe temporal constraints. It also provides a 
convenient way to combine both the observed intensity and 
spatial information under a Bayesian framework.  

To formally describe MRF modeling, we first consider a 
neighborhood system. We need to define a clique.  Let 
S denote a lattice indexing the pixels in a given target region.   
Let s be the lattice point (or pixel). The neighboring system 
N of each lattice point s  contains its neighbor points. It 

must be symmetric. A clique is a set of points, Cc ∈ , which 
are all neighbors of each other. An 8-point neighborhood 
system sN  around center pixels is used throughout this study. 
Let }k,,{L K1= denote the label set indicating each group.  
The number k  is 3 (GM, WM and CSF) in our case.  

Let the random variable X denote the labeling process of 
S such that Lxs ∈ is the value of X at pixel s [5]. Then the 
Markov property is expressed by  
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For practical use, a means to specify these conditional 
probabilities is required. This is provided by the equivalence 
of the MRF model and the Gibbs random field (GRF) model, 
since the GRF model can be specified in terms of clique 
potentials. That is, for modeling labeling compatibilities in an 
MRF, only cliques have to be considered. According to the 
Hammersley and Clifford theorem, the density of X is given 
by the following Gibbs density: 
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where Z  is a normalizing constant known as the partition 
function and )(xU is the energy function composed of the 
clique potentials cV : 
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The potentials for a point clique containing more than one site 
are defined as  
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This formula expresses only the prior distribution.   

Let the observed image y  be a realization of a random 

field Y . Let *x be the true unknown label of the observed 
pixels and let x̂ indicate an estimate of *x . The objective now 
is to find x̂  given y . In a Bayesian framework, )(xp can be 

viewed as the prior distribution for the true image *x . Then 
the posterior probability is, by Bayes’ theorem [12][13], 
proportional to 
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In general, the conditional densities )|( xyp of the observed 
image are generally modeled as a Gaussian distribution in 
image processing. But we use here an exponential 
distribution because the distribution shape of a brain image 
exhibits the similar appearance with an exponential 
distribution.  The conditional density function of the 
observed intensity y given the class sx  is given as  
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where sa and sb are the distribution parameters of each class. 
Then, the estimator of unknown label variable x̂  can be 
obtained by computing the maximum a posterior (MAP) 
probability. That is, it is given as 
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Here, we note that the logarithm of the posterior density is 
being maximized and all of the constant terms, not affecting 
the maximizing, are removed. However, this maximization is 
a computationally huge task because the number of possible 
configurations for pixel labels is too many.  In order to 
remedy this situation, we use a deterministic algorithm called 
iterated conditional modes (ICM) which maximizes local 
conditional probabilities sequentially. The ICM algorithm 
solves this maximization by sequentially minimizing the 
following equation at each pixel: 
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Finally, as we assign each pixel to a class with large 

posterior probability, we can segment the brain image.   

III. THE FIRST REGISTRATION USING AN ORDINARY 
PROCRUSTES ANALYSIS 

 We suppose that the configuration matrix X  is the 
)( mk × matrix of Cartesian coordinates of the k  feature 



  

points or landmarks in m -dimensions extracted from the 
segmented boundary surface of floating volume images F .  
The configuration matrix Y is also the matrix of Cartesian 
coordinates of the k feature points selected from the 
reference volume images R . Then, we can center each 
matrix of feature points by multiply the centering matrix 
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where kI is the )( kk × identity matrix, and k1 is the vector 
of ones.  

In order to match the two centered configurations in 
shape we need to establish a measure of distance between the 
two matrices. We primarily concentrate on the full 
Procrusteres distance [14], which is defined as follows. 

 
Definition 3.1 The full Procrustes distance between X 

and Y with centered matrix CXX =C and CYY =C is 
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where 2/1)}({ C

T
CC trace XXX = is the Euclidean norm, 

Γ is a rotation matrix, β is a scale parameter, and α is an 
location vector. 
 

In this case, we wish to match the two configurations as 
closely as possible up to a similarity transformation. To carry 
out this matching, we use least square techniques. It requires 
estimating all of the parameters minimizing the full 
Procrustes distance given in Definition 3.1.  

 
Result 3.2 The ordinary Procrustes solution to the 

minimization of the full Procrustes distance is given by  
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and Λ is a )( mm× diagonal matrix of positive eigenvalues of  
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Proof:  We wish to minimize  
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where CX and CY are centered. So, we must have 0α = .   
If we define the centerd pre-shape of a configuration matrix 
X  and Y as  

C

C

X
XZX =

, C

C

Y
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, 
then we need to minimize  
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Since the first two terms in the parenthesis of the trace are 
positive, to minimize the above trace becomes finding the 
maximum of )( ΓZZ XY

Ttrace  over the orthogonal matrix Γ .  

First, we consider a singular value decomposition of XYZZT  
given by 

  
TT UVZZ XY Λ= ,                             (14) 

 
where V and U are orthogonal matrices and Λ is a diagonal 
matrix with eigenvalues mλλ ,,1 L of the matrix XY ZZT .  
Hence, the above trace using this decomposition is equivalent 
to  
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where },,{ 11 mmrr L are the diagonal elements of the 
orthogonal matrix R . Now the set of diagonals of R is a 
compact convex set with extreme points )}1,,1{( ±± L with 
an even number of minus signs.  Hence, it is clear in our case 
that the maximum is achieved when we choose  

mirii ,,1,1 L== . 
Thus, we have taken the minimization rotation matrix as 

TUVΓ =ˆ because it is obtained from the result that 
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Second, differentiating the full Procrustes distance with 
respect to β  , we obtain: 
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Hence we can estimate the scale parameter as the following 
value: 
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Finally, we have only considered the rigid-body 

transformation in this paper. Therefore, the value of the scale 



  

parameter can be taken as one. Then, the transformation of 
the Cartesian coordinates X to Y from the floating image F  
to reference image R  is expressed by  

 

  
T
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where  XC  and YC  are the Cartesian coordinates of the 
centers of the two image, Γ  represents the rotation matrix 
and α   is the translation vector.  Hence, if we use the 
conclusion of Result 3.2, we have that the initial value of the 
rigid transformation parameters is given: 

 
TUVΓ =ˆ and 0α = .                          (20) 

 
Therefore, we have obtained that the initial transformation 
from Cartesian coordinates  X  to Y  be given: 

 

YXX ΓCXY CC −+−= ˆ)( .                          (21) 

IV. THE SECOND REGISTRATION USING THE ENTROPY OF THE 
BIVARIATE NORMAL KERNEL DENSITY  

 
To achieve the final registration for the two given images, 

we define the new optimal measure based on the entropy of 
the bivariate normal density function. Let S  be the 
overlapping volume of the floating images F  and the 
reference image R . We suppose that the image intensity 

)( niui ,,1 L=  of the position s  in the floating image F  

corresponds to the intensity ),,1( mjv j L=  at the 

transformed position )(sαT  in the reference image R .  
Here, we first define the bivariate normal kernel density 

computed from all pairs of two intensities ),( ji vu . This is 

generally defined by the product of the univatriate kernel 
densities. It is given by the formula: 
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where ijkw is the k -th component of the (i,j)-th observation, 

and kh is the bandwidth of the k -th component density.  
Next, we define the new optimal measure using the 

entropy of this density.  We call this measure the entropy of 
bivariate normal density function (EBND). It is defined: 
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It can be used as the measure of registration representing how 
much the floating image aligns with the reference image. We 
note that the more the two images align well, the more the 
value of the EBND measure decreases. Hence, we can find an 

optimal transformation αT of an image F  with respect to an 
image R  by searching the minimum value of the EBND 
measure used as the criterion of the image registration 

V. EXPERIMENTAL RESULTS 
 

We evaluated the efficacy of our registration method on 
both synthetic and clinical datasets. First, we evaluated the 
performance of the proposed EBND measure for 
multimodality registration using synthetic CT and MR 
volume datasets. The synthetic MR datasets were 
256x256x40, 8-bit grayscale volumes and also the synthetic 
CT datasets were 512x512x40, 8-bit grayscale volumes. Note 
that the general head volume images are composed with 
background, tissue, skull, and brain regions. Thus, we have 
constructed the synthetic volume images so that they have 
same structure as actual head images. Fig.1 shows the 10th 
slice of synthetic MR and CT volumes, respectively.  

 

      
(a)                                (b)  

Fig. 1. Synthetic datasets: (a) the 10th slice of MR synthetic volumes, and 
(b) the 10th slice of CT synthetic volumes 

  
We investigated the precision of our method by 

comparing registration traces with those of an MI based 
registration.  Fig. 2 displays the registration traces for the 
x-axis translation and rotation of CT floating volumes over 
MR reference volumes. As expected, we observed that the 
MI-based registration had a maximum value at the optimal 
location (0 pixel or 0 degree) but the EBND-based 
registration had a minimum value at the optimal location.  

 

 
(a) 



  

 
(b) 

Fig. 2.  MR to CT registration: (a) a translation in the range from -10 to +10 
pixel, and (b) a rotation in the range from -10 to +10 degree. 

 
Second, to compare the efficiency of our method with a 

MI based method for clinical datasets, we executed the rigid 
registration of unimodality and multimodality using the ITK 
Toolkit [15]. As for the unimodality registration, Table I 
provides the parameter values obtained from the experimental 
results for the MR volume images. The extracted parameters 
of the EBND and MI based registrations were comparable to 
those of the true registration parameters.  

 
TABLE I 

COMPARISON RESULTS BETWEEN THE MI AND EBND METHODS 
Method 

Parameter EBND MI Optimal 
value 

xT  15.1185 14.863800 15 

yT  0.2380 0.034089 0 
Translation 

(pixel) 
 

zT  -0.9167 0.611958 0 

Real 0.9962 0.996146 0.996 

xR  -0.0014 0.000686 0 

yR  0.0018 0.000723 0 

Rotation 
(quaternion) 

zR  -0.0862 -0.087706 -0.086 

 
Fig. 3 also shows the final unimodality registration 

results of the two methods for the MR volume images.  Two 
MR images are shown as a checkerboard where each block 
alternately displays data from each MR image. The 
checkerboard images before and after registration display 
visibly the effect of registration.  From our results, we note 
that the MI and EBND methods provide a relatively good 
registration outcome.   

 

 
Fig.3. Registration results for the MI and EBND methods using a unimodality 
volume image 
 

For multimodality registration, the MR volume images 
were used as the reference image and the CT volume images 
were used as the floating images. To assess the OPA for the 
initial registration, we applied the MRF model-based 
segmentation and Procrustes fit to the MR and CT images. 
Fig. 4 shows the process of an initial registration which 
includes segmentation, feature points extraction, and a 
Procrustes fit. Here, the feature points were extracted by 
sub-sampling the boundary into an equal spacing of 15 points. 
We noted that the shapes of the brain object were well 
preserved and the MR and CT images were roughly aligned. 

 

 
Fig. 4. The process of an initial registration applied to the MR and CT 

volume images.  
 

Table II provides the parameter values obtained from the 
registration results for the two volume images. The initial 
registration using the OPA yielded the rough alignment and 
the final registration resulted in the more accurate alignment. 
Hence we can also expect that the registration parameter 
values given by EBND method are comparable to the MI 
method.   

 
 
 
 



  

TABLE  II 
COMPARISON RESULTS OF THE TWO METHODS IN A MULTIMODALITY 

REGISTRATION 
Initial 

Registration Final Registration Method 
Parameter 

OPA MI OPA+EBND MI 

xT  -33.6902 0 -27.7393 -26.3844

yT  22.4839 0 24.5770 22.9486 Translation 
(pixel) 

zT  0.1063 0 11.8428 11.9285 

Real 0.9990 1 0.9985 0.9982 

xR  0.0000 0 -0.026 -0.0207 

yR  0.0000 0 -0.0044 0.0022 

Rotation 
(quaternion) 

zR  0.0380 0 0.0465 0.0436 

 
Fig. 5 shows the registration results for the MR and CT 

volumes using the MI and EBND registration methods. The 
CT and MR images are shown as a checkerboard. The bright 
color values represent the skull of the CT image and the 
contour in the less bright color represents the tissue of the MR 
image. After registration, the alignment can be observed from 
the overlap between the bright region representing the skull 
on the CT image and the corresponding dark region in the MR 
image. In each case, the registered floating images are in good 
agreement with the referenced images. 

 

 
Fig. 5. Registration results for the MI and EBND methods using 
multimodality volume images 

VI. CONCLUSIONS 
We presented a new registration method using both a 

ordinary Procrustes analysis and the EBND function. The 
initial registration was conducted by using ordinary 
Procrustes analysis and the final registration was based on the 
proposed EBND measure. We defined this function by using 
the entropy of the joint density of the bivariate normal kernel 
given from two intensities where one of them maps with the 

other intensity. The precision of our measure was evaluated 
by comparing registration traces obtained from a MR image 
and transformed CT images. Experimental results showed 
that the proposed registration method was highly robust and 
accurately aligned the referenced volume images and the 
floating ones at the global minimum of the EBND measure. 
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