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Abstract—Accurate Microcalcification (MC) segmentation is a 
crucial first step in morphology based Computer Aided Diagnosis 
systems for microcalcifications in mammography. In this article 
we present an automated segmentation method of individual 
MCs adaptive to both size and shape variations. Size is estimated 
by active rays (polar-transformed active contours) on continuous 
wavelet representation while shape adaptivity is achieved by a 
subsequent region growing step. Following MC seed point 
annotation, contour point estimates are obtained by 
implementing active rays on an analytic scale-space 
representation in a coarse-to-fine strategy. Initial coarsest scale is 
automatically defined by analyzing MC responses across scales. 
A region growing method is used to delineate the final MC 
contour curve, with pixel aggregation constrained by the MC 
contour point estimates. The segmentation accuracy of the 
proposed method was quantitatively evaluated by means of area 
overlap by comparing automatically derived borders with 
manually traced ones provided by an expert radiologist. The 
proposed method achieved an area overlap of 0.68±0.13 on a 
dataset of 67 individual microcalcifications, originating from 
pleomorphic clusters.  

 
Index Terms— active rays, continuous wavelet transform, 

microcalcification segmentation, region growing, size-adapted 
scale-space analysis.  
 

I. INTRODUCTION 
orphology analysis is important for the diagnosis of 
microcalcifications (MCs), as a means of quantifying 
size and shape properties of individual 
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microcalcification within a cluster or of the entire 
microcalcification cluster, according to the BI-RADS lexicon 
[1]. A number of authors have utilized a wide range of  
 
quantitative individual microcalcification morphology and 
intensity properties [2]-[4]. Accurate MC segmentation has a 
key-role in Computer aided diagnosis (CAD) systems 
performance, influencing morphologic feature extraction of 
individual microcalcifications. 

Accurate segmentation of individual microcalcifications 
remains a difficult task, challenged by microcalcifications size 
and shape variability, superimposed surrounding tissues and 
high frequency noise.  
 Segmentation of individual MCs has been achieved by 
grey-level based methods with empirically defined parameters 
such as region growing [5] and grey-level thresholding on pre-
processed ROIs [6]-[8]. To fulfill CAD requirements for real-
time behavior and parameter-free segmentation, more 
sophisticated techniques have been proposed such as 
morphologic operations [9]-[11], watershed algorithms [12], 
[13], Bayesian pixel classification combined with MRF 
models [14] and radial gradient based methods [13],[15].  

A segmentation method was recently proposed to deal with 
MC size variability [15]. Specifically, active rays (polar-
transformed active contours) were implemented on B-spline 
wavelet representation to identify microcalcification contour 
point estimates. Contour points are estimated in a coarse-to-
fine strategy initialized however at a fixed dyadic scale.  

The current study provides robust scale selection for 
initializing the coarse-to-fine strategy for MC segmentation, 
aiming to adapt on a wide range of MC sizes. A continuous 
wavelet transform (CWT) is used to provide normalized 
Laplacian multiscale representation where MC scale-space 
signatures are estimated. MC scale-space signatures are 
defined as the local maxima of the wavelet transform 
coefficients both along scale and spatial variables. These 
variables are subsequently used to initialize the active rays 
coarse-to-fine implementation across consecutive scales, for 
estimating MC contour points. MC delineation is achieved by 
region growing constrained by MC contour points. 
Segmentation accuracy of the method is evaluated 
quantitatively by means of area overlap on a dataset of 67 
individual MCs.  
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II. MATERIALS AND METHODS 

A. Dataset 
The case sample consists of 67 individual MCs of varying 
sizes and shapes, originating from 37 microcalcification 
clusters. All mammograms were selected from the Digital 
Database for Screening Mammography (DDSM), digitized 
with a LUMISYS laser scanner at a pixel depth of 12-bits and 
a pixel size of 50 μm. Figure 1 illustrates the distribution of 
the 67 individual MCs analyzed in our dataset, with respect to 
size (estimated by minimum and maximum length parameter).  
 

B. Estimating MC scale-space signatures with Continuous 
Wavelet Transform 
 

MCs cover a small number of image pixels and appear 
usually as bright or slightly elongated spots in the 
mammogram. Strickland [16] specifically modelled the 
average gray level profile of MCs by circularly symmetric 
Gaussian function. According to matched filter theory [17], 
the Laplacian of the Gaussian filter maximizes its response at 
the location of Gaussian like patterns in a noisy image. To 
reliable detect all potential MCs within an image, local 
maxima in Laplacian convolved images must be considered 
on a range of scales. Methods concerning the scale of objects 
to be detected by using convolutions for different kernel sizes 
are referred to as scale-space approaches [18]. Netch [17] 
estimated MC scale-space signatures from local maxima of 

normalized Laplacian responses across consecutive scales.  
CWT is a mathematical tool that inherently can provide a 

normalized Laplacian representation. CWT provides a scale-
space representation by convolving the image with a family of 
shifting α and scaling s functions 
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defined from a single function ℜ→ℜ:h  is called a 
wavelet. Provided that h satisfies certain admissibility 
conditions 
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then the representation { } ℜ→ℜ×ℜ 0:Wf  given by  
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is called the CWT of ℜ→ℜ:f . The scale-space 
representation can be considered to be a special case of CWT, 
where the scale-space axioms imply that the function h must 
be selected as a derivative of the Guassian kernel. This 
representation was suggested for image analysis by Mallat 
[19]. 

 In this study we applied the Mexican Hat wavelet 
(equivalent to the Laplacian-of-Gaussian function) where the 
2d continuous wavelet transform is given by 
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MC scale-space signatures were defined as the local 

maxima of the wavelet transform coefficients both along scale 
and spatial variables.  

 

C. Size-adapted MC segmentation 
Those variables were used to automatically initialize the 

coarse-to-fine approach of Active Rays segmentation method 
to estimate the MC contour points. Active rays (polar 
transformed active contours) reduce the contour points search 
from the 2D image plane to a 1D signal for an orientation θ, 
introducing a unique ordering in the image plane and thus 
reducing computation time [20]. In this work, active rays are 
implemented in the Laplacian scale-space representation, 
which inherently incorporates smoothness constraints, 
providing robustness to noise and spurious edges. MC contour 
points were estimated at 8 orientations, while scale variable 
ranged from 1 to 8 by steps of 0.2. The MC contour was 
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Fig. 1.  Histogram depicting the distribution of individual MCs with 
respect to (a) minimum and (b) maximum length parameter. 
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finally delineated with a region growing technique, 
constrained by the MC boundary estimates [15]. 

 

D. Evaluation of Segmentation Accuracy 
Quantitative segmentation accuracy assessment has been 

utilized in mammography either for simulated or real MCs 
[12], [21]. However, due to difficulty and time required in 
defining the exact ground truth, qualitative evaluation by 
means of subjective rating scales is an alternative approach, 
also recently adopted [13].  

In the current study, segmentation accuracy of the proposed 
method, as well as of the modified version, was quantitatively 
evaluated by means of the area overlap [12]. An expert 
radiologist defined the ground truth by generating manual 
outlines of individual MCs.  
The area Overlap between “ground truth” (O) and computer 
(C) derived borders is defined by: 
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The value of Overlap is bound between zero (no overlap) and 
one (exact overlap).  

To test if the differences in performance between the two 
segmentation methods is statistically significant or not, two-
tailed Student’s t-test for paired data was performed. Derived 
values of p<0.05 indicate statically significant difference. 

III. RESULTS 
Figure 2(a) depicts Regions of Interest (ROIs) containing 

MCs. Figure 2(b) depicts individual MCs segmented by active 
rays coarse-to-fine implementation across consecutive scales, 
with automatically selected initial coarse scale, followed by 
region growing. Delineations provided by an experienced 
radiologist (ground truth) are depicted in Figure 2(c). As it is 
observed, the proposed method has efficiently segmented 
MCs of various sizes and of various shapes. 

Figure 3 depicts the automatically selected initial coarse 
scale used in the coarse–to-fine implementation of active rays 
segmentation for each of 67 MCs of the dataset. As it is 
observed, most of the MC scale-space signatures are detected 
at scales s=3 to s=4.  

To demonstrate the efficiency of the automatically selected 
initial coarse scale, the segmentation was modified by 
selecting two fixed initial coarse scales (s=3 and s=4) to 
initialize coarse-to-fine strategy. Figure 4 illustrates area 
overlap values for the 67 MCs of the dataset, segmented with 
automatically selected initial coarse scale (white bars) as well 
as with fixed initial coarse scale s=3 (gray bars) and s=4 
(black bars). Corresponding mean and standard deviation 
values of area overlap are summarized in Table I.  
 The method with automatically selected initial coarse scale 
demonstrated a similar segmentation accuracy as compared to 
s=4 (p>0.05), and a statistically significantly higher 
performance as compared to s=3 (p<0.05). 
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Fig. 2.  Segmentation example of 6 individual MCs (a) Original ROIs 
(81x81 pixels) containing the individual microcalcifications. (b) 
Segmentations provided by active rays coarse-to-fine implementation 
across consecutive scales, with automatically selected initial coarse scale, 
followed by region growing, (c) Segmentations provided by an experienced 
radiologist (ground truth). 
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IV. DISCUSSION 
 

In a previous effort for MC segmentation, active rays were 
implemented on B-spline wavelet representation to identify 
MC contour point estimates in a coarse-to-fine strategy at a 
limited number of scales [15]. MC contour points were 
subsequently used to constrain a region growing technique.  

In the current study the CWT was employed to 
automatically detect MC scale-space signatures to initialize 
actives rays coarse-to-fine implementation for MC 
segmentation. The robust coarse scale selection in 
combination with the analytic scale-space representation 
provided by the CWT enhances the performance of the active 

rays segmentation method by adapting to wide range of MC 
sizes and avoiding spurious edges.  

In the dataset analyzed, most of MC scale-space signatures 
are detected at scale s=3 and s=4 (Fig. 3). To illustrate the 
advantages offered by the automatically selected initial coarse 
scale of active rays segmentation, the method was also 
implemented with a fixed initial coarse scale s=3 and s=4. 

Results of the quantitative segmentation accuracy 
evaluation suggest that robust coarse scale selection has a 
better or equal performance as compared to manually defined 
coarse scale s=3 and s=4 respectively (Fig. 4, Table I). In an 
unknown dataset, characterized by wide range of MC sizes, 
manual selection of coarse scale is both impractical (i.e. 
empirically defined) and suboptimal (i.e. only a specific range 
of MC sizes will be efficiently segmented). 

Difficulty and time required in defining the exact MC 
ground truth has motivated qualitative evaluation by means of 
subjective rating scales [13].  

While only one study has adopted a similar quantitative 
segmentation accuracy assessment for real MCs [12], 
difference in dataset does not allow direct comparison. 

Future efforts should consider expansion of the dataset as 
well as method performance comparison to inter- and intra-
observer variability.  

V. CONCLUSION 
The current study provides a robust scale selection 

algorithm for initializing a coarse-to-fine strategy for MC 
segmentation, aiming to adapt on a wide range of MC sizes. 
The method exploits CWT properties to detect MC scale-
space signatures to initialize actives rays coarse-to-fine 
implementation for MC segmentation.  

Results of the current study suggest that robust coarse scale 
selection can contribute to MC segmentation by adapting to 
wide range of MC sizes and avoiding spurious edges.  

Morphology based CAD schemes for MCs can take 
advantage of size adapted MC segmentation methods. 
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Fig. 4.  Area overlap values for the 67 MCs of the dataset, segmented 
by active rays with automatically selected initial coarse scale (white 
bars) as well as with fixed initial coarse scale s=3 (black bars) and s=4 
(gray bars). 
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Fig. 3.  Automatically selected initial coarse scales used in the coarse-
to-fine implementation of active rays segmentation for each of 67 
MCs of the dataset. 
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