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Abstract— Existing video monitoring techniques require clin-
icians to analyze substantial amounts of video data in diagnosis
of sleep apnea. Analysis of the covered human body from
video is a challenging task as traditional computer vision
methods such as correlation, template matching, background
subtraction, contour models and related techniques for object
tracking become ineffective because of the large degree of
occlusion for long periods. In condition of persistent heavy
occlusion, difficulties arise from night vision, large variances
of image features according to the occlusion level, the shifting
of the cover surface with movements, obscuration of the bodies’
edges by the cover, and wrinkle noises. We propose a near real
time method to robustly estimate the pose of fully/partially
covered or uncovered human body. The proposed method
contains a novel weak human model to accommodate large
variances of image features and a strong pose recognition
model derived from a stylized pose detector used for people
tracking by Ramanan et al. [10]. We improve the stylized pose
detection model by modifying the cost formula and template
representation to overcome weak cues and strong noise due to
heavy occlusion. In evaluation, the experimental results show
that the proposed model is promising to estimate the pose of a
human body with fully or partially covered or without covered.

I. INTRODUCTION

Video Monitoring has been adopted to assist diagnosis on
obstructive sleep apnea, which results in sleep disturbance
and consequential daytime sleepiness, leading to potentially
serious consequences for the individual, employers and so-
ciety as a whole. The apnea often ends with a loud snore
or gasp, along with movements of the whole body. Sivan et
al.[12] indicate that results from traditional Polysomnogra-
phy are highly correlated with human observation of video
test results. Recognition of covered human body activity
appears to be a challenging task. Existing monitoring tech-
niques in the sleep lab[14] utilize motion sensors, patterned
sheets and infrared light to compute gross degrees of motion
from video recorded throughout the night. However, gross
motion suggests only periods of activities rather than identi-
fying what the activities are, which still require clinicians to
analyze substantial amounts of video data. Hence, there is a
need for more automated methods for covered body analysis.

Human pose estimation in computer vision has been
working on the tracking part and proposes various sampling
schemes such as mean field Monte Carlo[6] and annealed
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Fig. 1. Obscured and Fragmented Motion (a),(b),(c) with Raw Image of
Covered Subjects (d),(e),(f)

particle filter[3], while utilizing simple detection models like
rectangles of edges or motion. Such methods work well
under requirements of clear image cues (for simple detection
models) and clean full body motion data (for dynamical
models in sampling). However, in real world applications,
partial occlusion often occurs and the assumptions to obtain
clear image cues and to have clean and complete full body
motion often fail. Ramanan et al.[10] indicate that in their
experiences low-level image features play a crucial role and
their work concentrates on the detection part.

Apart from partial occlusion, in real world scenes, it is
likely that partial and irregular motion information can be
available, which seriously affects the usability of the afore-
mentioned methods. In our application to monitor patients’
behavior, the goal is to estimate human poses in conditions
of persistent heavy occlusion with casual movements as seen
in Fig. 1. Although there is some published research inves-
tigating the monitoring of partially occluded humans [5],
[11], [13], [19], the methods examined do not deal with
pose estimation of consistently and almost wholly occluded
subjects.

This research addresses the problem of detecting and
segmenting the covered human body using infrared vision.
In the targeting problem domain, difficulties arising from
night vision, large variances of image features according
to the occlusion level, the shifting of the cover surface
with movements, obscuration of the bodies’ edges by the
cover, and wrinkle noises are compounded by human articu-
lated deformation. Traditional computer vision methods such
as correlation, template matching, background subtraction,
contour models and related techniques for object tracking



become ineffective [2], [7] because of the large degree of
occlusion for long periods.

II. PROPOSED METHOD

People use multiple visual cues to recognize objects, such
as the color, texture, silhouette and shape of the object. In
the absence of color, texture and silhouette information in
our problem domain, the analysis of object recognition can
be only based on the geometry alone. The proposed method
overcomes the difficulties from poor quality of image cues
due to heavy obscuration, from large variance on image
features due to unpredictable human behavior to remove or
pull back the cover, from poor quality of motion due to heavy
obscuration, and from fragmented motion due to partial and
occasional movement.

The proposed method is comprised of two models. (1) A
robust weak human model to accommodate large variance
of image features is introduced in Sec.III. We improve and
extend our previous efforts [16], [17] of a covered upper
body detection model to locate the obscured head and torso
by adding multiple detectors utilizing weak features for
individual body part and integrating the decisions of sub-
models into a weak human model. (2) A stylized pose
matching model to identify the posture of the covered body
is described in Sec.IV. The pose recognition model uses
multiple human hypotheses generated by the obscured human
upper body model as regions of interest, chamfer matches
distance transformed maps of individual edge orientation
information with pre-trained human templates, and outputs
human configurations with the lowest matching cost. The
pose recognition model is derived from a stylized pose
detector used for people tracking by Ramanan et al.[10]. We
improve the stylized pose detection model by modifying the
cost formula and template representation to overcome weak
cues and strong noise due to heavy occlusion.

In evaluation, we compare our modified stylized pose
detection model with the original stylized pose detector and
show that the proposed model outperforms the original pose
detector, which tends to suffer from strong noise generated
by the cover in our problem domain. The experimental results
are presented in Sec.V, showing that the proposed model
is able to estimate the obscured body pose. Without code
optimization, the system runs near to real time (it takes
0.4 second to process a frame with a P4 2.4GHz CPU on
average). Limitations of the proposed method and future
work are discussed in Sec.V-C. We conclude in Sec.VI.

III. WEAK HUMAN MODEL

The initial set of hypotheses of the head and torso are
proposed by the weak human model, which is comprised
of a novel obscured head model, a novel obscured shoulder
detector, a novel obscured torso model and a novel leg joint
detector.

A. Obscured Head Detection

The head detector is used to propose the initial set of
human hypotheses. There has been considerable work on

face detection in computer vision research over the past ten
years. However, most of the face detection systems require
at least portions of the face to be shown, such as both eyes
and therefore are inapplicable in our problem domain since
patients may sleep on their side, presenting only half or less
of the face. Therefore, the first contribution of this work is
a head detector invariant to facial direction.

The head model weighting function constitutes four sub-
weighting functions utilizing various types of features, and
measuring the region of interest from different aspects in
order to overcome occlusion and obscuration. The multiple
head hypotheses obtained with weights greater than zero are
then used to search for the torso and further pose estimation.

The weighting function of the head is formulated as
follows, and each sub-weighting function is introduced in
the following section.
if ‖Xh −Xsho‖ 6= 0,

w(Xh) = w(I1|Xh)w(I2|Xh)w(I3|Xh) (1)

otherwise,

w(Xh) = w(I1|Xh)w(I2|Xh)(w(I3|Xh)+w(I3|Xh, Xsho))
(2)

,where ‖Xh −Xsho‖ is the Euclidean distance between the
joint points of Xh and Xsho.

B. Hierarchical Boosting Models

I1 is the image observation by a horizontal oriented
edge detector (see Fig. 2(a)). A variant of boosting algo-
rithm [18] is used to build a three layers cascade classifi-
cation model [15] M, which outputs the proposal function
w(I1|Xh).

w(I1|Xh) = { 1 if M⇒ true
0 otherwise

(3)

C. Edge Clustering Model

I2 is the image observation by the Prewitt kernals[9], a
contrast enhancement filter and a binary filter (see Fig. 2(b)).
The weighting function w(I2|Xh) is formulated below.

w(I2|Xh) = { 1 if
∑ ∑

(j,k)∈Xh
I2(j, k) > α

0 otherwise
(4)

where α = λ×area of Xh (λ = 0.1, which is determined
empirically using training data).

D. Novel Head Top Detector

I3 is image observation by a vertical oriented edge detector
(see in Fig. 2(c)) and a binary filter. w(I3|Xh) is the
confidence weight of the top of the head. Given a potential
head region Xh, we evaluate the top of the head region Xt

as illustrated in Fig. 2(d) and produce the weighting function
below.

w(I3|Xh) =
∑ ∑

(j,k)∈Xt

I3(j, k) (5)



Fig. 2. Image observations for the head: (a) Horizontal oriented edge
image I1 (b)Image by Prewitt kernals and a contrast enhancement filter
I2 (c) Vertical oriented edge image I3 (d)Definition of potential areas of
shoulders S1, S2, S3, S4, and the top of the head Xt to the head region
Xh

E. Obscured Shoulder Detection

There are two distinctive types of shoulder postures: the
frontal posture and the side posture. The appearance of
the shoulders in frontal postures are detectable by roughly
symmetric (obscured) two-side shoulders, but the appearance
of the shoulder on side is not conspicuous. Hence, we create
a weight function w(I3|Xh, Xsho) for potentially heavily
obscured frontal shoulders. Instead of contour matching
on a number of head-shoulder templates as seen in [8]
where shoulder contour is clearly represented, we define
four potential regions S1, S2, S3, S4 of two shoulders as
displayed in Fig. 2(d) using vertical oriented edge images
as in Fig. 2(c) for I3. The reason to use four regions
instead of two is to accommodate variances of the shoulders’
position and heavy obscuration of the shoulders by the
cover. In addition, the proposed shoulder detection method
largely saves computational time in compared to the contour
matching approach [8].

Firstly, we compute the strength of feature exhibiting level
ci for each potential region Si of the shoulders.

ci =
∑ ∑

(j,k)∈Si

I3(j, k) (6)

Next, {c1, c2, c3, c4} are compared, and two are selected
as the shoulder exhibiting levels (a1, a2), which are then
used to generate the confidence weight of the shoulders
defined by the given head hypothesis Xh according to the
symmetrization index of the shoulders ∆ and the shoulder
exhibiting levels (a1, a2).

if c1 ≥ β ∧ c3 ≥ β,

(a1, a2) = (c1 − β, c3 − β) (7)

otherwise if c2 ≥ β ∧ c4 ≥ β,

(a1, a2) = (c2 − β, c4 − β) (8)

otherwise if max(c1, c2) ≥ β ∧max(c3, c4) ≥ β,

(a1, a2) = (max(c1, c2)− β,max(c3, c4)− β) (9)

otherwise,
(a1, a2) = (−1,−1) (10)

, where β = 18 is determined empirically by training data.

∆ = ‖a1 − a2‖ (11)

TABLE I
EXPERIMENTAL RESULTS ON SHOULDER DETECTION

c1 c2 c3 c4 a1 a2 ∆ Importance w(I3|Xh, Xsho)

23 29 37 10 5 19 14 1.71
10 35 34 17 16 17 1 33
18 27 9 37 9 19 10 2.8
17 7 26 27 -1 -1 0 0

*Two figures in (c1, c2, c3, c4) in Bold are selected to generate (a1, a2).

1 2 3

Fig. 3. Head to Torso Candidates: Coarse Classification Type 1, Type 2
and Type 3

The shoulder weighting function w(I3|Xh, Xsho) is for-
mulated as follows.

w(I3|Xh, Xsho) = {
a1+a2

∆ if a1 ≥ 0 ∧ a2 ≥ 0 ∧∆ > 0
1 if a1 ≥ 0 ∧ a2 ≥ 0 ∧∆ = 0
0 otherwise

(12)
The design of the shoulder weighting function is based on

(1) the symmetrization of the shoulders and (2) the strength
of feature exhibiting level. To illustrate the importance func-
tion, where higher confidence weight is given to instances
with higher symmetric orientation (∆ ↓) and stronger edge
exhibiting level(a1 ↑, a2 ↑), some examples of experimental
results are listed in Table I.

Importantly, w(I3|Xh, Xsho) = 0 does not necessarily
mean that the shoulders are not in the frontal posture because
they may be obscured. However, whenever the shoulders
exhibit clearly, we utilize the shoulder information I3 to
assist the estimation of the neighboring nodes, i.e. Xh and
Xtor, and increase the likelihood of the neighboring nodes.

F. Obscured Torso Model

The appearance of the torso varies considerably according
to the level of occlusion by the cover, the hands or the arms.
Hence, to accommodate large variance on the appearance
of the torso, we develop three measurement models to
formulate the torso detection model, including an obscured
torso measurement model from our previous work [16], [17],
a shoulder to torso measurement model and a novel leg joint
detection model, which will be introduced in the next section.

The proposed obscured head to torso detector coarsely
classify potential torso regions into three categories (Type
1, Type 2 and Type 3) as seen in Fig. 3, and the output of
the torso model is the estimated torso type. The algorithm is
described as follows.

Obscured Torso Detection Algorithm:
1 if w(I3|Xh, Xsho) > 0



Fig. 4. Edge box maps Itor and raw images: regions with high
w(Itor|Xtor) are highlighted

(clear shoulders exhibit)
1.1 w(Xtor) = w(I3|Xh, Xsho)
1.2 output Type 2.

2 Otherwise
2.1 X

′

tor = arg max(w(Itor|Xtor))
2.2 if X

′

tor ∈ {Type 1, Type 3}
(compute the weight of the leg joint to the torso)
2.2.1 if w(I3|X

′

tor, Xjoint) < τ ∧ w(I3|X”
tor, Xjoint) > ϕ

(where X”
tor =Type 1 if X

′

tor =Type 3
; otherwise X”

tor =Type 3
,and τ, ϕ are defined in the next section)
2.2.1.1 w(Xtor) = w(Itor|X”

tor)
2.2.1.2 output X”

tor

2.2.2 Otherwise
2.2.2.1 w(Xtor) = w(Itor|X

′

tor)
2.2.2.2 output X

′

tor

w(Itor|Xtor) is built from our previous efforts [16] of a
covered torso model and an edge box map technique. Itor is
the edge box map extracted, and the key concept is to look
for a relative flat region as a potential torso candidate and
assign higher weight to the area with less number of edge
boxes inside.

w(Itor|Xtor) = (
∑ ∑

(i,j)∈Xtor

n(i, j))−1 (13)

Due to limited paper length, more details can be found
in [16]. Fig. 4 shows some examples of potential torso
hypotheses using w(Itor|Xtor).

G. Obscured Leg Joint Detector

If the estimated torso from the previous section is Type 1
or Type 3, we assume both that the person is lying on his/her
side instead of on the back and that the image observation
of the leg joint to the torso is detectable. Similar to the
design concept of the obscured shoulder detection model,
three sub-regions {Jlp}p=1,2,3 are defined to search for the
potential leg joint according to the estimated torso type l in
order to accommodate variances of the leg joint’s position
and obscuration of the image features of the leg joint by
the cover. Fig. 5 illustrates the image observation I3 and the
sub-regions {Jlp}p=1,2,3 for detecting the leg joint to the
torso.

Fig. 5. Final Estimated Pose and Image Observation for Leg Joint Detectors

Fig. 6. Stylized Pose Pictorial Structure (a) Template Representation in
[10] (b) Template Representation of the Proposed Method

w(I3|Xtor, Jlp) = w(Jlp) =
∑ ∑

(j,k)∈Jlp

n(j, k) (14)

if Xtor is Type 1,

w(I3|Xtor, Xjoint) = max(w(J11), w(J12), w(J13)) (15)

if Xtor is Type 3,

w(I3|Xtor, Xjoint) = max(w(J31), w(J32), w(J33)) (16)

We assume that w(I3|Xtor, Xjoint) ∼ N (mj , σ
2
j ), and in

step 2.2.1 of the previous section, τ and ϕ are defined as
τ = mj − 2× σj and ϕ = mj .

IV. POSE RECOGNITION

The proposed pose recognition model is adapted from a
lateral walking pose detector by Ramanan et al.[10]. We
modify the method to overcome strong edge noise by the
cover, to accommodate large variance of features, and to
further improve the estimation. We briefly discuss the lateral
walking pose model below.

Ramanan et al.[10] introduced a lateral walking pose
detector for people tracking. They quantize edge pixels into
one of 12 orientations, produce distance transformed edge
images [1] for each orientation, compute the chamfer cost
separately for each orientation with the manually set rotated
edge templates as seen in Fig. 6(a), add the costs together,
and select the human configuration with the lowest cost. In
addition, they use pictorial structure method [4] for efficient
sampling. However, the approach is easily attracted towards
strong edge noise generated by the cover and thus tends to
produce incorrect pose estimation in our experiments on the
covered subjects. Some examples are given in Fig. 7.



Fig. 7. (a)Separate Edge Orientations with Estimation of [10] (b)Results
of [10] (c) Results of the Proposed Method

Fig. 8. (a)raw image with the system output (b)combined edge orienta-
tion (c) edge orientation vector: (67.5,112.5] and (247.5,292.5], which is
used to compute DT (90) (d)edge orientation vector: (112.5,157.5] and
(292.5,337.5], which is used to compute DT (135) (e)edge orientation
vector: (22.5,67.5] and (202.5,247.5], which is used to compute DT (45)
(f)edge orientation vector: (-22.5,22.5] and (157.5,202.5], which is used to
compute DT (0)

In this work, we improve the model by adding two main
modifications. The two major modifications are made on (1)
the formula of the matching cost and (2) the representation
of the templates as seen in Fig. 6(b).

We quantize edge into eight orientation and extract four
vectors of edge orientation information from the input image,
which is illustrated in Fig. 8. The four vectors are then pro-
cessed by distance transformation (DT) and used for chamfer
matching pre-trained part-based edge templates generated by
twenty manually marked images. Regarding the chamfer cost
function, instead of matching on all DT vectors of individual
edge orientations and summing up the costs, we select the
DT vector(s) of the oriented edges for individual rotated
templates. Furthermore, we combine costs from different DT
vectors by selecting the minimum of the costs rather than the
sum of the costs. For example, if the rotated part template
is 20 degree, we define the matching cost of the template
as min(DT (0), DT (45)). Moreover, only outside border is
used to match for avoiding strong noise generated by the
cover as in Fig. 8(b).

TABLE II
POSE ESTIMATION ACCURACY

All Images Torso RUL LUL RLL LLL

OUB+cwPose 0.98 0.94 0.95 0.91 0.92
OUB+[10] 0.97 0.68 0.48 0.61 0.35

With Cover Torso RUL LUL RLL LLL

OUB+cwPose 0.99 0.94 0.96 0.91 0.94
OUB+[10] 0.99 0.63 0.44 0.55 0.32

No Cover Torso RUL LUL RLL LLL

OUB+cwPose 0.96 0.93 0.85 0.89 0.81
OUB+[10] 0.85 0.96 0.70 0.93 0.48

*OUB: proposed obscured upper body model; cwPose: proposed pose
recognition method; RUL: right upper leg; LUL: left upper leg; RLL: right
lower leg; LLL: left lower leg.

V. EXPERIMENTS

We use two articulated models to represent the human
configuration, including two leg human model and one leg
human model. The two leg human model has six parts,
corresponding to the head, torso and two parts per leg; the
one leg human model has four parts, corresponding to the
head, torso and two part for the leg. The decision to use
which model is based on the cost of chamfer matching on the
torso templates. To generate the part templates, we manually
marked the location of each part in twenty images.

A. Experimental Setup

A SONY infrared camcorder (DCR-HC-30E) is utilized
to capture the data. The infrared video frames were acquired
with resolution of 320*240. In order to simulate the environ-
ment for diagnosis on sleeping disorders, there was no visible
lighting in the filming room and the subject was covered by a
sheet. Furthermore, the experimental data was collected with
three different occlusion levels (i.e. fully covered, partially
covered and without cover) and various body postures.

B. Experimental Results

In evaluation, we tested the model by matching it to 166
images containing a number of unconstrained poses and vari-
ous occlusion levels (with cover:139; without cover: 27). We
also compare the proposed method with [10]. Table II shows
the pose estimation accuracy of the proposed algorithms and
[10]. If the overlapping area of the estimated body part and
the body part is greater than 70%, we count the estimation
as an accurate estimation. The pose estimation accuracy
in Table II is equal to the number of accurate estimation
dividing by the number of estimation.

The experimental results show that [10] obtains lower
accuracy for covered subjects and that the proposed methods
(OBU+cwPose) outperforms the referenced work overall and
for covered subjects. Some matching results are shown in
Fig. 9.



Fig. 9. System Outputs



Fig. 10. Results affected by strong edge noises.

C. Limitation and Future Work

Although the sampling technique [4] improves the compu-
tational efficiency and works well for un-occluded subjects
as in[10], we observe that the estimation of the leg postures
suffers both from strong noises by the cover and from weak
expression of features, which can be improved by develop-
ment of the sampling methods in the future work. Some
examples are illustrated in Fig. 10. Furthermore, advanced
method utilizing partial but fragmented motion information
will be investigated to improve the estimation of the body
posture.

VI. CONCLUSION

Analysis of the covered human body from video is a
challenging task as traditional computer vision methods such
as correlation, template matching, background subtraction,
contour models and related techniques for object tracking
become ineffective [2], [7] because of the large degree
of occlusion for long periods. Difficulties arise from night
vision, the shifting of the cover surface with movements,
obscuration of the bodies’ edges by the cover, and wrinkle
noises are compounded by human articulated deformation.
In the absence of color, texture and silhouette information in
the targeting problem domain, we have presented a novel
technique for estimating the pose of a covered human,
overcoming the difficulties from poor quality of image cues
due to heavy obscuration, from large variance on image
features due to unpredictable human behavior to remove or
pull back the cover, from poor quality of motion due to heavy
obscuration, and from fragmented motion due to partial and
occasional movement.

The proposed method contains a novel weak human model
to accommodate large variance of image features and a
strong pose recognition model adapted from a lateral walking
pose detector[10] for people tracking. In evaluation, exper-
imental results show that the proposed model is robust to
estimate the pose of a human body with fully or partially
covered or without covered. As the number of the exper-
iments in this paper is limited, more experiments will be
conducted using patients and volunteers in the Sleep Lab
at the Lincoln County Hospital to determine performance
on a large scale and to generalize across the variations in
human sizes, shapes, and behavior. Furthermore, we will
develop a system to diagnose movements characteristic of
sleep disturbances.
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