
  

[  

Abstract—    Macroscopic neurophysiologic models, supposed 
to produce EEG signals, suggest that the epileptic seizures are 
due to a limit of stability of the system. A technique based on 
multivariate autoregressive model (MVAR) and stability 
analysis by means of the eigenvalues of the estimated model is 
presented in this paper. This method has been used to analyse 
stability of EEG signals of epileptic patients, especially during 
epileptic seizure. We computed the maximum of the module of 
the eigenvalues on short term intervals by using a sliding 
window in the EEG signals. Results show that these values 
remain close to 1 and nearly constant during the epileptic 
seizure and occasionally thereafter, especially in the case of 
secondary generalized seizures. A new feature (IndexS) has 
been introduced in the purpose of emphasizing this 
phenomenon. The number of seizures identified correctly by 
this index was 11 among a total of 17 seizures.  

 

I. INTRODUCTION 

Electroencephalography is a useful tool for physicians. 

It can be used for diagnostic purposes in many brain’s 
pathologies as epilepsy, sleep troubles, etc. 

Epilepsy is the most current pathology in this field and 
concerns about 1% of the population. One of the 
characteristics of epilepsy is the presence of repetitive 
seizures. Clinically, these seizures can take different forms: 
from muscular moves to critical convulsions called “Grand 
Mal” or tonic-clonic seizure. In EEG signals, an epileptic 
seizure is characterized by high-voltage and rhythmic EEG 
waveforms as illustrated in Fig. 1. High-voltage signals 
show a phenomenon of high synchronous activities of the 
brain or a part of it. Epilepsy can be focal (or partial) if the 
seizure is reduced to a part of the brain, called the focus. If 
the entire brain is affected, the epilepsy is said to be 
generalized. 
   In the literature, different kinds of models have been 
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proposed to simulate EEG signals. Models presented in [1]-
[6] use neurophysiologic mechanisms and are called “mean-
field models” because of their macroscopic approach. These 
models are able to represent epileptic-like EEG signals as 
well as normal EEG signals. They strongly suggest that 
epileptic activity is related with the instability or quasi-
instability of the system leading to rhythmic activities. 
Investigating this feature of epileptic process in EEG signals 
could permit to better understand this process and to provide 
a feature for characterizing the epileptic seizure in 
computer-based monitoring of EEG.  

The detection of epileptic seizure is an important purpose 
for specialist’s diagnostic, because it could save the 
specialist time by pointing out the seizure periods. In the 
literature, various features have been investigated with some 
success [7]. Multiple features can be used in a same 
algorithm by means of a classifier, like support vector 
machine, to increase the performance of the detection. 

 Furthermore, another interesting challenge in the field of 
EEG signal processing is the ability of predicting a seizure. 
It could enable in the future to avoid seizures of the patients 
by means of different techniques. Several linear and 
nonlinear features have been investigated in [8]-[11]. But at 
the present time, it’s difficult to say if an epileptic seizure is 
reliably predictable [12], [13].  

 

 
Fig. 1. Segment of EEG signals with an epileptic seizure. 

 
 In this paper, we propose to investigate the stability of the 
EEG signal of patients with epileptic seizures. To that 
purpose, a multivariate autoregressive (MVAR) model has 
been used. The model order is reduced by using a state 
representation and the eigenvalues are computed from the 
resulting system to investigate the stability of the signal. The 
maximum of the module of the eigenvalues is computed for 
each analysis frame along the entire signal, before, during 
and after epileptic seizure for several epileptic patients. 
   Similar methods have been used elsewhere in a different 
framework [14], [15]. In [14] a nonlinear MVAR model has 
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been estimated and the maximum of the modules of the 
eigenvalues of biomedical signals has been computed in 
order to analyse the stability of breathing patterns of a 
patient affected by sleep apnea. In the field of oceanographic 
purposes [15], the eigen-decomposition of sea level by 
means of linear MVAR model has been studied.  

II. THEORY 

A. Multivariate autoregressive modelling 
In multivariate autoregressive modelling, the current 

sample is estimated by a weighted sum of past samples of 
this channel as well as of the other channels. The MVAR 
representation of a vector process nX  is derived from the 
scalar version by replacing scalars by matrices. Let 

1
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n mX x n x n x n×∈ =΅ be a stationary discrete-
time zero-mean m-dimensional stochastic process. The 
vector process nX  can be modelled as the output of a 
multichannel system driven by a m-dimensional zero-mean 
white Gaussian noise 1m

nE ×∈ ΅ with a covariance 
matrix m mC ×∈ ΅ . 
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Expression (1) is the MVAR model of the process, p is 

the model order and iA , i = 1,…,p m m×∈ ΅ are the model 
parameters to be estimated. 

Adding state variables, a p-order MVAR model can be 
written as a 1-order model [16]. It consists in replacing n iX −  
with 1i >  by new states variables. This leads to: 
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noise vector and J is the system matrix expressed as: 
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Equation (2) is called the state representation of the system. 

B. Eigenvalues and stability 
The system matrix J can also be written as: 

 
1J PLP−= ,                                             (4) 

 

where the columns of P  mp mp×∈ ΅  are the eigenvectors kP . 
L is a diagonal matrix that contains the mp eigenvalues: 
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The state vector can be expressed as a linear combination of 
the eigenvectors: 
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with coefficient vector (1)... ( )

T

n n nX X X mp⎡ ⎤= ⎣ ⎦
% % %   mpx1∈ ΅  

The noise vector can be expressed in a similar way as 
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with coefficient vector (1)... ( )

T

n n nE E E mp⎡ ⎤= ⎣ ⎦
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By replacing (6) and (7) in (2), we get: 
 
                                1n n nX LX E− +=% % %.                               (8) 

 
The covariance matrix C′ of the noise vector nE% can be 
expressed as: 
 

                          1C P CP−′ =                                      (9) 
 

Therefore, we have a new system with mp independent 
equations that defines the mp modes of the model: 
 
      1( ) ( ) ( )n k n nX k X k E kλ −= +% % %   for k =1…mp.               (10) 
 
These equations are now coupled only via the covariance 
matrix C′  of the noise coefficients. 

An eigenvalue λ  is a complex number that defines a 
specific mode of the system: 

 
     ire ωλ = ,                                        (11) 
 

with r denoting the damping ratio and ω  the frequency. An 
eigenvalue with imaginary part defines an oscillatory 
damped mode and a real eigenvalue defines a non-
oscillatory damped mode. When max ( λ ) < 1, the system is 
said to be asymptotically stable [17]. Thus, we expect that 
the eigenvalues of the matrix J could give a good feature of 



  

the stability of the system. For more details on the eigen-
decomposition, see [13]. 

III. METHODOLOGY 

A. EEG database 
The study was carried out on 11 patients suffering from 

partial seizure (Temporal Lobe Epilepsy) followed, in 
several cases, by secondary generalizations. The 11 patients 
present a total of 17 seizures. 

EEG signals of epileptic patients have been recorded on 
25 electrodes at the University Hospital in Brussels 
(Belgium) at the sampling frequency fs = 250 Hz. The 
epileptic seizures have been labelled by a neurologist using 
both EEG signals and video monitoring. The electrode 
montage is referential: the voltage is measured between a 
reference electrode and each one of the 25 electrodes. A 
10/10 system is used. The positions of each electrode are 
shown in Fig. 2. 

 

 
 
Fig. 2.  System 10/10. Used Electrodes have been marked with bold circles. 

B. Estimation of the multivariate autoregressive 
coefficients  
In order to estimate the multivariate autoregressive 

coefficients, we used the multivariate generalization of the 
Burg method for monovariate autoregressive model 
estimation, called Vieria-Morf method. Schlögl [18] showed 
that this method is the best among other methods for 6-
channels EEG. We used this algorithm from the open source 
TSA Matlab toolbox. 

C. Selection of the model order 
The selection of the model order is not a trivial problem. 

The order is chosen according to a trade-off between fitness 
of the model and computational cost. Several criterions for 
AR model order selection are available in the literature. 

The order estimated from one of these criterions should 
give an insight on the dimension of the inherent system. We 
could expect that a more complex signal (for instance noise-
like signal), will require a higher order. In this paper, the 
Schwartz Bayesian criterion (SBC) is used for the selection 
of the order p of the model. Indeed, for MVAR model, the 
SBC is superior to the Akaike information criterion (AIC) 
and the final prediction error criterion (FPE) as discussed in 
[19]. 

In order to select a model order, we computed Schwartz 
Bayesian criterion on many time windows of 10 s on long-
term (several hours) EEG signals of different patients. We 
fixed p = 25, which is the most frequently obtained value for 
the criterion (Fig. 3). 
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Fig. 3. Selection of the model order by means of SBC. The SBC is 
plotted as a function of the order for a time window of 10 s (2500 
samples for each of 25 channels). 

 

D. Implementation of the method 
Each channel has been filtered using a high-pass filter 

with a 0.15 Hz cut-off frequency in order to remove low-
frequency artefacts [20], together with a 70 Hz low-pass 
filter .This frequency range is commonly used for epilepsy. 
A 50 Hz notch filter has been used to eliminate the power 
line interference from of the EEG signals. 

We used sliding analysis windows of 10 s along the signal 
with a time shift of 2 s between successive windows. We 
computed for each window the MVAR model by means of 
Vieria-Morf estimator on the 25 channels and then the 
eigenvalues of the system matrix J. 
   The maximum of the module of the eigenvalues has been 
calculated for each window by excluding non-oscillatory 
modes, i.e. real eigenvalues, as explained previously.  

IV. RESULTS AND DISCUSSION 
The maximum of the module of the eigenvalues computed 

according to the method described in section II are shown as 
a function of time for 2 patients with 2 seizures each in Fig. 
4a, 5a and 6a. The 2 seizures of patient A are partials and 
secondary generalized. Patient B presents 2 complex partial 
seizures taking place in a short period of time. The starts of 
the seizures are marked by an arrow in Fig. 4, 5 and 6. 

We filtered the values with a 5-tap moving average filter 



  

in order to smooth the traces of the maximum of the module 
of the eigenvalues. The resulting values are displayed in Fig. 
4b, 5b and 6b. 
    We can see a different behaviour during the seizure 
period (ictal period) compared to the non-seizure period 
(interictal period). In Fig. 4b, 5b and 6b, the values remain 
close to 1 and form a plateau during and occasionally after 
the seizure. To emphasize this behaviour, we computed the 
following index: 
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where max ( )kλ  is the maximum of the modules of the 
eigenvalues for time window k. This index is computed on n 
windows around the current window of the smoothed trace 
and permits to illustrate this transition phenomenon. In order 
to keep appropriate time resolution, the number of windows 
involved in the computation of the index has been n=5. The 
results are shown in Fig. 4c, 5c, and 6c. 
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Fig. 4. First seizure of patient A: a) maximum of the module of eigenvalues 
b) filtered values by the moving average filter c) IndexS. 
 
 In Fig. 4c, 5c and 6c, we can see that the index permits to 
emphasize the phenomenon previously observed and reaches 
a maximum during the epileptic seizure and occasionally 
thereafter, especially in the case of secondary generalized 
seizures as can be seen for patient A in Fig. 4 and 5. The 
number of seizures correctly identified by this index was 11 
among the total of 17 seizures of the database.  
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Fig. 5. Second seizure of patient A: a) maximum of the module of 
eigenvalues b) filtered values by the moving average filter c) IndexS. 
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Fig. 6. The 2 seizures of patient B: a) maximum of the module of 
eigenvalues b) filtered values by the moving average filter c) IndexS. 
   

V. CONCLUSION 
 



  

This paper has investigated a technique based on MVAR 
model for stability analysis by means of the eigenvalues of 
the underlying model. As far as we know, this method has 
never been used in epileptic EEG analysis. Even if, at the 
present time, the epileptic process is poorly understood, this 
technique is based on neurophysiologic considerations 
endorsed by macroscopic models of generation of the EEG.  

Results show a different behaviour of the maximum of the 
module of the eigenvalues of the MVAR model after the 
start of the seizure and often after the seizure itself (Fig. 4 
and 5). This last observation is surprising and needs further 
investigations. Results obtained in this paper corroborate the 
assumptions about stability of epileptic system. 

In the future, this technique needs to be statistically tested 
in the purpose of establishing a detection feature. In order to 
compare the proposed approach to other features of seizure 
detection for scalp EEG recordings, the different methods 
needs to be tested on the same data set and the false alarm 
rate has to be fixed (by means of ROC-curve) to determine 
the sensibility as in [7]. 

Prelimining results suggest that prediction purposes seem 
to be excluded with this method. It may be the model is too 
simple to show a phenomenon before the seizure. Actually, 
several authors [11], [21]-[24] suggest that phenomena before 
seizure could be due to nonlinear mechanisms. Using more 
complex models such as nonlinear autoregressive model or 
neurophysiologic based models with nonlinear mechanisms 
could improve the method presented in this study. 
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