
 
 

 

  

Abstract— Osteoarthritis (OA) is a major cause of morbidity 
worldwide, representing the most common form of arthritis. 
The radiographic assessment of OA-severity is mainly relied on 
qualitative criteria, evaluating structural alterations of the 
joint. In the present study a computer-based image analysis 
method was developed for the grading of hip OA-severity from 
radiographic images. The sample of the study comprised 64  
hips (18 normal, 46 osteoarthritic), corresponding to 32 
unilateral and bilateral hip-OA patients. Two experienced 
orthopaedists assessed OA-severity from pelvic radiographs, 
employing the Kellgren and Lawrence (KL) grading scale. 
Accordingly, 3 KL-based OA-severity categories were formed: 
(i) “Normal / Doubtful”, (ii) “Mild / Moderate”, and “Severe”. 
After radiographs digitization their contrast was enhanced by 
means of the Contrast Limited Adaptive Histogram 
Equalization method. Employing custom developed algorithms: 
(i) 64 ROIs, corresponding to patients’ Hip Joint Spaces 
(HJSs), were determined on the processed radiographs, and (ii) 
the Radial Distance Signature (RDS) of each HJS-ROI was 
generated, as the sequence of the Euclidean radial distances 
between the “centre of mass (centroid)” and each point of the 
HJS-ROI contour. The generated RDS was subject to the 
Discrete Wavelet Transform (Coiflet1 wavelet, Level 2 
decomposition). Statistical measures of the generated wavelet 
coefficients were used for the formation of feature vectors, 
representative of the HJS-ROIs. These vectors were involved in 
the design of a grading system, based on the Bayes classifier, 
which was used for the discrimination between: (i) normal and 
OA hips, and (ii) hips of “Mild / Moderate” and “Severe” OA. 
The classification accuracy achieved regarding the 
discrimination between normal and OA hips was 95.3%, while 
the relevant score for the characterization of hips as of “Mild / 
Moderate” or “Severe” OA was 91.3%. The proposed system 
could be of value for the management of hip OA patient. 

I. INTRODUCTION 
STEOARTHRITIS (OA) is a musculoskeletal disorder, 
associated with significant social consequences and 

health economic implications [1]. The condition involves all 
the tissues of the joint, although the loss of articular 
cartilage as well as alterations in periarticular bone are 
considered as the most characteristic features of the disease 
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[2]. Plain film radiography is accepted as the imaging 
modality of reference for the assessment of the osteoarthritic 
joint in daily clinical routine [3]. The typical radiographic 
features indicating the presence of OA in the hip joint 
comprise osteophytes, Hip Joint Space (HJS) narrowing, 
development of subchondral cysts, sclerosis of the 
subchondral bone, and abnormalities of bone contour [2], 
[4]. In the context of radiographic assessment of OA, the 
evaluation of the severity of the disease is mainly based on 
the use of qualitative grading scales. The latter comprise a 
number of severity grades, the definition of which relies on 
aspects of joint structural alterations, visualized on plain 
radiographs [5]. The Kellgren and Lawrence (KL) grading 
scale [6] is considered as the gold standard for 
epidemiological studies of the disease, despite its 
deficiencies [7]. 

On the basis of digital image analysis terminology, the 
shape of an object is a feature of great significance for 
object description and recognition purposes. Furthermore, 
shape analysis techniques attempt to provide a descriptive 
quantitative characterization of shape [8]. Several 
pathological conditions are associated with alterations 
concerning the morphology of anatomical organs and 
regions. Thus, shape analysis of biomedical images may 
provide quantitative diagnostic information of potential 
value for the characterization of the depicted anatomical 
structures [9].  

A shape alteration associated with hip OA is the 
narrowing of radiographic HJS. The particular  radiographic 
finding has been considered as a defining criterion for 
epidemiologic studies of the disease [10], while the 
monitoring of HJS-narrowing has been accepted as the most 
reliable index for the monitoring of OA progression [4]. 
HJS-narrowing reflects, indirectly, the progressive and non-
uniform loss of the articular cartilage due to OA [4], which 
results in the differentiation of the shape of radiographic 
HJS in osteoarthritic hips.  

Gregory et al. [11] demonstrated the feasibility of a shape 
analysis approach, based on the concept of Active Shape 
Models [12], regarding both the quantification of shape 
alterations of  the proximal femur in OA, and the provision 
of image markers for monitoring of the disease progression. 
In previous studies performed by our group, the capacity of 
shape analysis of radiographic HJS for the grading as well as 
the quantification of hip OA-severity has been documented 
[13]-[17]. However, all our previous works concerned the 
utilization of shape analysis approaches, which provided 
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uniresolution and single-scale spectral shape features of 
radiographic HJS. The present study aims to extent the 
already existing approaches concerning the assessment of 
hip OA severity on the basis of shape information. In this 
context, the capacity of multiresolution shape descriptors of 
radiographic HJS, regarding the assessment of osteoarthritic 
alterations of the hip joint is investigated. The generation of  
these multiresolution shape features was accomplished by 
the suitable combination of the concepts of wavelet analysis 
and contour-based shape representation. Previous research 
works have been reported regarding the recognition of two-
dimensional object contours, on the basis of wavelet contour 
representation algorithms [18], [19]. However,  to the best of 
our knowledge, a relevant approach for the radiographic 
assessment of hip OA has never been previously reported.  

The present study is concerned with the development of a 
computer-based image analysis system for the grading of hip 
OA-severity from radiographic images. To this end: (i) the 
radiographic HJS was represented by its Radial Distance 
Signature, (ii) the latter was subject to the Discrete Wavelet 
Transform (DWT) and a number of wavelet coefficients 
were generated, (iii) a classification scheme, designed on the 
basis of the generated coefficients, was implemented for the 
characterization of hip OA-severity. 

II. MATERIALS AND METHODS 

A. Clinical Sample and Radiographic Images 
The sample comprised 64 hips (18 normal, 46 

osteoarthritic), corresponding to 32 patients of unilateral 
(18) and bilateral (14) hip OA. The diagnosis of OA was 
based on the clinical and radiographic American College of 
Rheumatology criteria [20]. For each patient a pelvic 
radiograph was available. All radiographs were obtained 
following a specific radiographic protocol. The latter 
concerned use of the same X-ray unit (Siemens, Polydoros 
50, Erlangen, Germany), tube voltage 70-80 kVp, 100 cm 
focus to film distance, alignment of the X-ray beam 2 cm 
above the pubic symphysis, use of a fast screen and film 
cassette (30 cm x 40 cm). Radiographs were digitized 
employing a laser digitizer for medical applications 
(Lumiscan 75, Lumisys, Sunnyvale, CA, USA) [21], and 
following a digitization protocol, which comprised image 
depth of 12 bits (4096 gray levels) and spatial resolution of 
146 ppi (5.75 pixels / mm). The radiographic severity of hip 
OA was assessed by consensus of two experienced 
orthopaedists, on the basis of the KL grading scale [6]. The 
latter defines five severity categories via an equal number of 
grades, ranging between 0 and 4. Grade 0 is assigned  to a 
normal hip joint, while grade 4 indicates a severe 
osteoarthritic condition. Intermediate levels of OA-severity, 
characterized as “Doubtful”, “Mild”, and “Moderate” are 
described by the grades 1, 2, and 3, respectively [6]. For the 
needs of the present study three major KL-based severity 
categories were formed: “Normal-Doubtful (KL=0,1)”, 

“Mild-Moderate (KL=2, 3)”, and “Severe (KL=4)”. In this 
context, 18 hips were assigned to the “Normal-Doubtful”, 16 
to  the “Mild / Moderate”, and 30 to the “Severe” category.  

B. Determination of  Radiographic Hip Joint  Space 
On each digitized pelvic radiograph, 2 ROIs, 

corresponding to patient’s both radiographic HJSs were 
determined, employing custom developed algorithms in 
Matlab software (The MathWorks Inc., Natick, USA). The 
whole procedure concerned the following steps: (i) contrast 
enhancement and emphasis of the articular margins of the 
hip joint by implementing the Contrast-Limited Adaptive 
Histogram Equalization method [22]. (ii) Formation, on the 
basis of patient’s anatomical landmarks, of an acute angle of 
450, providing the medial and lateral limits of the HJS-ROI 
[23]. As it can be observed from Fig. 1, the medial limit was 
defined by the line joining the centre of the femoral head (O, 
summit of the angle) and the highest point of the 
homolateral sacral wing (V). On the other hand, the lateral 
limit was defined by a line (OB), drawn automatically by the 
program at 450 to the medial limit. The aforementioned 
anatomical landmarks were selected so as the weight-
bearing portion of the femoral head being encompassed 
within the acute angle, as proposed by Conrozier et al. [23]. 
The landmarks were marked manually on the digitized 
radiographs by each of the orthpaedists, using a graphic 
cursor. (iii) Manual delineation of the inferior and superior 
articular margins of the joint, corresponding to upper margin 
of the femoral head and the roof of the acetabulum, 
respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The determined HJS-ROI (see Fig. 2a) was further subject 

to shape analysis. 
 
 
  

Fig. 2. Segmented Hip Joint Space Region Of Interest of Fig. 1 (a) and 
corresponding contour and centroid (*) (b).  

 
Fig. 1. Determination of the Hip Joint Space (HJS) ROI. VOB: acute 
angle of 450.  Dotted line represents the delineated articular margins.  



 
 

 

Fig. 4. (a) Radial Distance Signature (RDS) generated for the Hip Joint 
Space (HJS) Region Of Interest (ROI) of Fig. 2. (b) Approximation 
RDS signal at Level 2, (c) Detail signal at: Level 1,  and (d) Level 2, 
obtained by Level 2 wavelet decomposition of the RDS signal.  

C. Generation of Radial Distance Signature 
The two-dimensional radiographic depiction of the hip 

joint contour (see Fig. 2b) was turned into one-dimensional 
(1-D) by generating the Radial Distance Signature (RDS) 
[24] of the determined HJS-ROI (see Fig. 4a). For the needs 
of the present study, the RDS was generated employing 
custom developed algorithms in Matlab software, according 
to the following steps:  
(i)  Determination of the centre of “mass” (“centroid”) of       
the HJS-ROI (see Fig. 2b).  
(ii) Tracing of the exterior boundary of the HJS-ROI. 
(iii) Calculation of the radial Euclidean distances between 
the centroid and each point of the exterior boundary of the 
HJS-ROI. 
In particular, assuming that the exterior boundary of the ROI 
comprises N pixels, the coordinates of the centroid (x',y') are 
given by:  
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where x(n) and y(n) are the discrete coordinates of each 
contour pixel [24]. The HJS-RDS is then defined as:  
                     HJS-RDS(n)={[x(n)-x']2+[y(n)-y']2}½                 (3) 

Considering the computational approach followed for the 
generation of the HJS-RDS, the latter, practically, represents 
a 1-D sequence of radial Euclidean distances, which can also 
be considered as a 1-D discrete signal.  

D. Calculation of  multiresolution shape features  
The multiresolution shape features of radiographic HJS 

were calculated within a methodological context concerning 
the wavelet analysis of the generated HJS-RDS. In 
particular, employing custom developed algorithms in 
Matlab software, the HJS-RDS was subject to the Discrete 
Wavelet Transform (DWT) [25], so as a multiresolution 
(multilevel) signal decomposition being performed. 

The DWT concerns the decomposition of a discrete signal 
into a hierarchy set of orthogonal approximation and detail 
signal functions (coefficients). The former represent the 
high-scale, low frequency components of the analyzed 
signal, while the latter represent the low-scale, high 
frequency components. On the basis of digital signal 
processing terminology the DWT can be considered as a 
filtering process, employing a proper pair of complementary 
filters. Within this framework, and considering the case of 
the single-level wavelet analysis, the decomposition of the 
signal concerns its convolution with (i) a low pass, and (ii) a 
high pass filter. The result of the first filtering task is the 
generation of the approximation coefficients, while the 
second filtering process leads to the generation of the detail 
coefficients. The low pass filter involved in the 
decomposition process is associated with the, so called, 
scaling function φ, while the high pass filter is related with 
the wavelet function (mother wavelet) ψ. The 
multiresolution (multilevel) analysis of a discrete signal 

concerns the iteration of the previously described 
decomposition process, with the approximations obtained at 
each level been further-successively decomposed. The 
DWT, in contradiction to the Continuous Wavelet 
Transform, concerns the calculation of wavelet coefficients 
not for every possible, but for specific subsets of scales and 
positions of the analyzing wavelet. By selecting dyadic 
scales and positions (i.e. subsets of scales and positions, 
based on powers of two) the analysis can be fast, yet 
accurate and efficient [25], [26]. Thus, the speed, the 
accuracy and the efficacy of the DWT led us to the 
utilization of the specific method in the present study. 

Compared to Fourier analysis, which permits the 
evaluation of a signal in the frequency domain exclusively 
[24], Wavelet analysis renders capable the decomposition of 
a signal into components localized in both the time (spatial) 
and the frequency domains [25], [26]. Accordingly, wavelet 
signatures convey information associated to local spectral 
features, while Fourier spectral signatures contain solely 
frequency relevant information. The fact that in wavelet 
analysis both the frequency and the time (spatial) content of 
the signal are retained, wavelet signatures can be considered 
as of enriched information content.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

For the needs of the present study, a level 2 
decomposition was implemented, employing the Coiflet1 
(‘Coif1’) wavelet [26]. Accordingly, three sets of wavelet 
coefficients were generated, corresponding to the two detail 
levels as well as the one approximation level (see Fig. 4). 
For each one of the 3 sets of wavelet coefficients, the 
following statistical measures were calculated and were 
utilized as multiresolution shape features: (i) mean value, (ii) 
median value, (iii) maximum value, (iv) minimum value, (v) 
range, (vi) standard deviation, (vii) skewness, (viii) kurtosis, 
(ix) mean absolute deviation, and (x) median absolute 
deviation. In this context, the representation of the HJS-ROI 
at each decomposition level concerned the formation of a 
10-dimensional feature vector, comprising the 



 
 

 

aforementioned statistical measures of wavelet coefficients. 
It has to be noted that the selection of the Coif1 wavelet as 
mother wavelet was performed on a multiple trials basis. In 
this context, several wavelet functions, available within 
Matlab, were used for the decomposition of the RDS signal. 
After multiple trials it was found that the best classification 
results were accomplished for multiresolution features 
generated for a Coif1 based multi-scale decomposition.  

E. Design of the Computer-Based Grading System 
The assessment of hip OA-severity was performed by a 

computer-based grading scheme, implemented on the basis 
of the Bayes classifier. The latter was used for the 
discrimination between: (i) Normal and osteoarthritic hips, 
and (ii) hips of “Mild / Moderate” and “Severe” OA. 

The Bayes classifier implements a statistical pattern 
recognition approach, based on Bayes formula from 
probability theory. The classifier is designed so as to 
minimize the average risk (probability of misclassification) 
associated with a discrimination task. For a classification 
problem concerning the assignment of an unknown pattern x 
into one of N classes ω1, ω2,...,ωN, the Bayes classifier 
decides by utilizing functions of the form: 
       dk(x)=lnP(ωk)-(1/2)·ln|Ck|-(1/2)·[(x-mk)T·Ck

-1·(x-mk)] 
(5) k=1,2,...,N, where Ck and mk represent the covariance 
matrix and the mean vector of class ωk, respectively, T 
indicates transposition, p(x|ωk) stands for the class-
conditional probability density function, describing the 
distribution of pattern vectors within the class ωk, while 
P(ωk) represents the a priori probability concerning the 
occurrence of class ωk. The pattern x is assigned to the class   
associated with the highest value of the decision function  
dk(x) [9].   

In order to determine the feature combination providing 
the highest classification accuracy with the minimum 
number of features (“optimum” or “best” feature 
combination) the exhaustive search procedure was followed 
in conjunction with the Leave One Out (LOO) classification 
error estimation method. Given the size of the sample which 
was available for the present study, the task of feature 
selection, as well as those of classifier training and testing 
were carried out by not utilizing separate training and test 
sets. In this context, the LOO method was used so as to 
estimate the overall accuracy of the categorization scheme. 
It has to be noted that the specific method is widely 
employed in pattern recognition studies concerning limited 
number of available data samples [27]. The LOO approach 
permits the evaluation of the classification performance on 
the basis of data samples that are not used for the design of 
the classifier. 

In the present study, features were exhaustively combined 
each other (i.e. combinations of two, three, etc. features) in 
order to form a feature vector (exhaustive search). For every 
feature combination, the classifier was designed employing 
all the feature vectors (patterns) of the sample, but one. This 

pattern was considered as an unknown one and was used in 
order to determine the committed classification error (LOO). 
The whole procedure was repeated as many times as the 
number of the patterns of the sample. In order to safeguard 
against variations in the dynamic range of the generated 
features, a fact that could result in inaccurate classification 
scores, the features were normalized to zero mean and unit 
standard deviation [9].  

F. Statistical Analysis 
The Lilliefors test was used in order to assess the 

normality of distributions for the generated features [28]. 
The Student’s t-test was used for the investigation of the 
existence of statistically significant differences between 
normal and osteoarthritic hips for multiresolution shape 
features following normal distributions. For non-Gaussian 
distributions, the existence of significant differences was 
assessed by means of the Wilcoxon ransksum test [29]. In 
both cases, the significance level was set at 5%. The 
Coefficient of Variation (CV) was used in order to evaluate 
both the intra-observer and the inter-observe reproducibility 
concerning the determination of HJS-ROIs [29]. 
Accordingly, each one of the experienced orthopaedists 
evaluated separately all radiographs twice, with about a 
month’s interval between evaluations. The obtained scores 
were utilized for the calculation of the CV. Matlab Statistics 
Toolbox was used for the statistical analysis. 

III. RESULTS AND DISCUSSION 
A degenerative alteration in OA is the progressive and 

non-uniform loss of articular cartilage. In a radiographic 
image this loss is indicated by the narrowing of HJS, which 
induces differentiations in the shape of the specific 
anatomical region. Considering the segmented HJS-ROI as 
an object within a digital image [30], the shape of the object 
is expected to determine the position of its centre of “mass” 
(‘centroid’). Thus, alterations in the shape of HJS, due to 
narrowing, are expected to differentiate the centroid 
position. On the other hand, abnormalities of the bone 
contour of the joint are radiographic findings, which define 
the disease [2]. The generation of HJS-RDS involves both 
the centroid of radiographic HJS, and the pixels 
corresponding to the radiographic depiction of the hip joint 
contour. Thus, it seems reasonable to assume that the RDS 
signal is expected to convey diagnostic information, relevant 
to OA alterations of the hip joint. In the present study, the 
diagnostic information was associated to the wavelet 
coefficients corresponding to the detail and approximation 
components of the RDS, obtained according to the DWT. 
The latter rendered capable a multi-resolution analysis of the 
shape signal associated to the articular margins of the hip 
joint. In this context, the generated multiresolution shape 
features supplement the already existing ones, which have 
been documented as of value for the assessment of OA 
alterations of the hip joint [13]-[17].   



 
 

 

Statistical analysis revealed the existence of statistically 
significant differences (p<0.05) between normal and 
osteoarthritic hips for the generated multiresolution shape 
descriptors. The specific finding complies with shape 
alterations of the osteoarthritic hip joint.  

All measurements were found to be reproducible. 
Regarding the intra-observer and the inter-observer 
reproducibility of HJS determination, the CV was found 
equal to 3.2% and 4.0%, on average, indicating the 
reliability of the determination process. In addition, feature 
values that were generated from the twice-determined HJS-
ROIs did not differ significantly (p>0.05). It has to be noted 
that in previous studies performed by our group, the region 
of radiographic HJS had been determined on the basis of 
manual delineation [13], [15]-[17], [31]-[34] or automatic 
segmentation [14]. The latter concerned the use of an Active 
Contours (Snakes) segmentation model [35]. However, and 
given the reproducibility of the manual determination 
process, manually determined HJS-ROIs were employed in 
the present study.  

The highest classification accuracy accomplished 
regarding the discrimination between normal and 
osteoarthritic hips was 95.3% (see Table I). In particular, the 
Bayes classifier discriminated successfully 61 out of 64 hips, 
employing a four-dimensional (best) feature vector. The 
latter comprised the statistical measures of mean value, 
minimum value, mean absolute deviation, and median 
absolute deviation, calculated from the wavelet coefficients 
corresponding to the second detail decomposition level.  The 
specificity accuracy achieved was 94.4%, given the correct 
characterization of 17 out of 18 normal hips. Finally, the 
sensitivity accuracy raised to 95.6%, corresponding to 
successful discrimination of 44 out of 46 degenerated hips.  

Table II tabulates the classification results for the 
discrimination task concerning the characterization of 
osteoarthritic hips as of “Mild / Moderate” or “Severe” OA. 
As it can be observed, the Bayes classifier assigned to the 
proper categories 42 out of 46 osteoarthritic hips, 
accomplishing an overall accuracy of 91.3%. Referring to 
hips of “Mild / Moderate” OA, 3 of them were misclassified, 
and thus the relevant classification score was 81.2%. On the 
other hand, only one out of 30 hips of “Severe” OA was 
incorrectly characterized as of “Mild / Moderate” OA, 
providing an accuracy of 96.7%. The aforementioned scores 

were achieved for the optimum feature combination 
comprising the features mean value, median value, 
maximum value, and median absolute deviation. Again, the 
second detail level coefficients were used as computational 
basis of the aforementioned multiresolution shape 
descriptors.  

The multiresolution shape features, calculated as 
statistical measures of the generated wavelet coefficients, 
provide information relevant to the energy distribution of the 
RDS signal, in both the spatial and the frequency domains.  

The aforementioned classification scores were 
accomplished on the basis of the LOO classification error 
estimation method. However, safer conclusions regarding 
the performance of the classification system could be drawn 
by the utilization of distinct training and test sets. 
Additionally, a more comprehensive representation for the 
classification performance of the system could be provided 
by a Receiver Operating Characteristic (ROC) curve.  

Several approaches have been proposed for the 
quantitative assessment of radiographic HJS. In a previous 
study the discrimination between normal and osteoarthritic 
hips had been performed by the application of quantitative 
thresholds on manually measured HJS-width values on 
colon radiographs, with an error rate of 3.6% for joints with 
HJS-width ≤ 2.5 mm [36]. In previous studies performed by 
our group textural information extracted from the region of 
radiographic HJS had been employed in the design of 
pattern recognition schemes for the discrimination among 
OA-severity categories. The accomplished classification 
accuracies were relatively high, justifying the utilization of 
radiographic texture of HJS as a parameter of potential value 
for the diagnostic assessment of hip OA (detailed results can 
be found in Refs. [31]-[34]). In addition to the 
aforementioned approaches, the shape of radiographic HJS 
has been employed for the characterization of hip OA in our 
previous works. As in the case of texture analysis,  the 
implementation of shape-based classification schemes 
resulted in successful discrimination among various grades 
of hip OA-severity [13]-[17].  

The relatively high classification scores accomplished by 
the utilization of multiresolution shape features, may 
indicate the potential value of the suggested approach 
regarding the assessment of hip OA-severity. 

TABLE I 
CLASSIFICATION RESULTS FOR THE DISCRIMINATION BETWEEN 

NORMAL AND OSTEOARTHRITIC HIPS 

Hip Normal Osteoarthritic Accuracy (%) 

    
 

Normal 17 1 94.4 
    
Osteoarthritic 2 44 95.6 
    

Overall 
Accuracy 

          95.3 
 

 

TABLE II 
CLASSIFICATION RESULTS FOR THE DISCRIMINATION BETWEEN HIPS 

OF MILD / MODERATE AND OF SEVERE OSTEOARTHRITIS 

Hip  Mild /   
Moderate Severe Accuracy (%) 

    
 

Mild / 
Moderate 13 3 81.2 

    
Severe 1 29  96.7 

    
Overall 

Accuracy 
           91.3 

 



 
 

 

IV. CONCLUSION 
The findings of the present study indicate that structural 

alterations of the hip joint in OA condition can be reliably 
assessed by multiresolution shape features. The latter 
provide quantitative diagnostic information on the basis of 
wavelet coefficients, associated with the radiographic 
depiction of the articular margins of the hip joint. The 
utilization of the aforementioned shape descriptors in the 
design of a classification system resulted in high 
classification scores, regarding the characterization of hip 
OA-severity. The suggested approach may contribute to the 
management of osteoarthritic patients.  
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