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Abstract— The purpose of this study is to investigate a new
technique for image-based cancer cell classification and provide
a more quantitative and objective characterization method for
a diagnosis, which currently relies on qualitative and empirical
judgment of pathologists. For this, a new method for chromatin
texture characterization employing a new feature,contour com-
plexity, is proposed and evaluated using nuclear images obtained
from paraffin-wax embedded sections of human breast cancer
on slides. The proposed feature is calculated on the basis of a
contour length of nucleus obtained by setting different threshold
values of intensity for a grayscale image, and it is a quantitative
measure of chromatin texture. An expectation-maximization
(EM) algorithm-based segmentation and an effective initial
parameter search method for EM are used for the automatic
calculation of the feature. The results for breast cancer cell
detection showed that the average contour complexity value for
malignant cells (19.6̊ 4.1) is found to be significantly greater
(p < 10`6, Kolmogorov-Smirnov test) than that of benign cells
(0.35±0.17). By the comparison with the conventional fractal
dimension approach, it is shown that the proposed feature is
much more sensitive feature than the fractal dimension for the
individual cancer cell detection.

I. INTRODUCTION

In spite of the recent progress in understanding the prop-
erties of cancer cells from a molecular biological point
of view [1], the final diagnosis of cancer still relies on
pathologists’ judgment, which is less objective and difficult
to quantify. Therefore, it has been expected that quantitative
and objective characterization of cancer cells will promote
more accurate evidence-based diagnosis.

A number of methods have been proposed to characterize
cancer cells on the basis of digital images. The most obvious
and important feature of a cancer cell is the nuclear size.
However, some types of cancer, such as invasive lobular
carcinoma and lobular carcinoma in situ, have relatively
small nuclear sizes, and thus it is difficult to diagnose such
types of cancers on the basis of nuclear size only.

Another important feature is chromatin texture. Accord-
ing to the degree of DNA condensation, chromatin can
be categorized into two main classes, euchromatin and
heterochromatin, and coarse and asymmetric aggregates of
heterochromatin are observed throughout a wide range of
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cancers [2]. It is therefore important to characterize the
chromatin texture to achieve a quantitative and objective
cancer diagnosis.

Since there are many ways to characterize the texture in
cancer diagnosis, a variety of methods for achieving this
have been proposed, such as the gray level co-occurrence
matrices [3], chromatin distributions [4], entropy [5], and
fractal dimension [6]–[8].

Among these methods, the fractal dimension is particularly
widely used in the field of pathology (see [9] for comprehen-
sive reviews). Fractal dimension can be used to describe the
self-similarity, the complexity, or the irregularity of objects.
Although fractal dimension is widely used for characterizing
cancer cells, it is not sensitive enough to detect individual
cancer cells, and predict the histopathological diagnosis with
sufficient accuracy [10].

The purpose of this study is to investigate a new technique
for image-based cancer cell classification and provide a more
quantitative and objective characterization method for the
current pathology which relies on the qualitative and em-
pirical judgment of pathologists. We propose a new method
for chromatin texture characterization employing a new
feature,contour complexity. The expectation-maximization
(EM) based segmentation method and an effective parameter
initialization method for EM are employed to calculate this
feature automatically. The effectiveness of the proposed
method is evaluated and compared with a fractal dimension
based approach.

II. MATERIALS AND METHODS

A. Fluorescence in situ Hybridization (FISH)

Paraffin-wax embedded sections of human breast cancer
on slides were heated to 60◦C for 30 mins and washed 4
times in xylene for 10 mins each before rehydration through
an ethanol series. They were then microwaved for 50 mins
in 0.1M citrate pH6 buffer, washed and stored in water. The
slides were washed for 40-50 mins in a pepsin/HCl solution
at 37◦C, rinsed in PBS then 2xSSC and dehydrated through
an ethanol series and air dried.

The slides were incubated in 2xSSC for 5 mins at 75◦C,
denatured for 3 mins at 75◦C in 70% formamide-2xSSC,
plunged into ice-cold 70% ethanol for 3 mins, dehydrated
through an ethanol series and air dried. Whole chromosome
FISH was carried out using ready-made probes from Cambio
(Cambridge, UK) according to the manufacturer’s instruc-
tions. Briefly, the probe is hybridized to section overnight
at 37◦C, then washed 4 times for 3 mins in 2xSSC at
45◦C, 4 times for 3 mins in 0.1xSSC at 60◦C and stored
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Fig. 1. Examples of input image. (a) benign cell; (b) malignant cell. Scale
bars, 5µm.

in 4xSSC/0.01%Tween. Biotin labeled paints were detected
using fluorochrome-conjugated avidin (FITC or Texas Red)
(Vector Laboratories) followed by biotinylated anti-avidin
(Vector Labs) and a final layer of fluorochrome-conjugated
avidin. Digoxygenin labeled probes were detected using rho-
damine anti-dig (Vector Labs) followed by a layer of Texas
Red anti-sheep (Vector Labs). Slides were counterstained
with 0.5µg/ml DAPI/vectashield.

B. Image Acquisition

FISH images were captured (256x256x24bit) at a mag-
nification of 100X, using a Coolsnap HQ CCD camera
(Photometrics Ltd, Tucson, AZ) attached to a Zeiss Axio-
plan II fluorescence microscope with 100x plan-neofluar oil
objective, a 100W Hg source (Carl Zeiss, Welwyn Garden
City, UK) and a Chroma #83000 triple band pass filter
set (Chroma Technology Corp., Rockingham, VT) with the
excitation filters installed in a motorised filter wheel (Prior
Scientific Instruments, Cambridge, UK). Image capture and
analysis were performed using in-house scripts written for
IPLab Spectrum (Scanalytics Corp, Fairfax, VA). DAPI-
stained nuclear images were obtained using blue channel
of the original RGB images and saved in TIFF format
(256x256x8bit). Fig. 1 shows examples of images used for
analysis.

Algorithm 1 Initial Parameters for EM
1: Inputs k0: # of classes , r0: initial

cluster resolution , {xi, pi}m
i=1: empirical

density , ε: shrink rate
2: r ← r0 // initialize cluster resolution
3: while k ≤ k0 do
4: k ← 0
5: I ← {1, 2, . . . ,m} // indices of non-empty

bins
6: repeat
7: j ← argmax

i∈I
pi

8: Nj ← {i ∈ I : ∥xj − xi∥ ≤ r} // r-neighbor
of xj

9: if mini<kd(xj , Ci) < r then
10: Ci ← Ci ∪Nj // merge into overlapped

cluster
11: else
12: k ← k + 1
13: Ck ← Nj // accept as a new cluster
14: end if
15: I ← I\Nj // remove processed indices
16: until I = ∅
17: r ← (1− ε)r // change cluster resolution
18: end while
19: calculatewk, µk, and σk usingCk (k = 1, 2, . . . , k0)

III. STATISTICAL IMAGE ANALYSIS

A. Segmentation

Since our quantification method relies on the contour
length, it is crucial to extract the nuclear area accurately
and stably. For this purpose, we used EM-based image
segmentation and parameter initialization for EM.

As a probabilistic model for a grayscale image, we used
a finite normal mixture withk0 components (k0 = 3):

p(xj) =
k0∑

i=1

wif(xj |µi, σi) (1)

=
k0∑

i=1

wi
1√
2πσ2

i

exp
[
− (xj − µi)2

2σ2
i

]
, (2)

wherexj is an intensity value at thej-th pixel, f(xj |µi, σi)
is the normal density of thei-th component with meanµi and
standard deviationσi, andwi is a mixture ratio. The parame-
ters (i.e. mixture ratio, intensity mean and standard deviation)
were estimated so as to maximize the likelihood using the
EM algorithm [11]–[13]. Each pixel in the grayscale image
was classified based on a posterior probabilityπij calculated
as:

πij =
wif(xj |µi, σi)∑k0

ℓ=1 wℓf(xj |µℓ, σℓ)
. (3)

That is, if πℓj was the largest posterior probability out of
πij (i = 1, 2, . . . , k0) then thej-th pixel was classified as
a member of theℓ-th component. Pixels belonging to the
component with the smallest mean intensity were segmented
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Fig. 2. Examples of contour length sequence obtained from (a) benign cell
shown in Fig. 1a and (b) malignant cell shown in Fig. 1b. The gray area in
(b) corresponds to contour complexity value.

as a background area, and the remaining pixels were regarded
as a nuclear area.

To obtain a smooth boundary, a Gaussian filter was ap-
plied to the boundary pixels and their neighboring pixels.
The boundary was then re-segmented using the threshold
determined by the procedure explained above. Gaps or holes
are filled when they exist in the nuclear area.

We refer to the contour length of an extracted nuclear
area as “standard contour length”,L∗. Smoothing and gap
filling were processed only for the calculation of the standard
contour lengthL∗.

B. Initial Parameters for EM Algorithm

Although the convergence of the EM algorithm is theo-
retically guaranteed, the parameters estimated with it are not
necessarily globally optimal. When the initial parameters are
not appropriate, the parameter values can become mired in
a local maximum during the likelihood maximization.

Algorithm 1 shows a parameter initialization algorithm
based on empirical density (i.e, normalized histogram).

This algorithm generates a sub cluster by merging bins
in the r-neighbor of the peak density value, and the next
sub-cluster is either merged into it or accepted as the second
cluster depending on the overlap between sub clusters. With

Algorithm 2 Contour Complexity
1: extract nuclear area
2: calculate standard contour lengthL∗

3: normalize maximum intensity in the nuclear area to 255
4: set thresholdi ← 0
5: while i ≤ 255 do
6: extract areas with intensity≥ i
7: calculate total contour lengthLi of the extracted areas
8: i ← i + 1
9: end while

10: Calculate contour complexity (8) based on obtained
contour length sequence{L0, L1, . . . , L255}

this algorithm it is possible to determine the initial parame-
ters for EM automatically.

In the Algorithm 1,m is the number of non-empty bins
in the empirical density,xi and pi are center value and
probability mass of thei-th bin, respectively, andNj is a
set of bin indices in ther-neighbor of thej-th bin. Overlap
d(x,A) is defined as

d(x, A) = min {|x − xi| , i ∈ A} , (4)

whereA is a set of bin indices. When cluster resolutionr is
too large, all sub-clusters may be merged into a single cluster
or result in a number of clusters less thank0 . In both cases,
the cluster resolutionr is shrunk until the specified number
of clusters, i.e.,k0, is obtained.

When k0 clusters are successfully obtained, the initial
parameters are calculated as

wk =
∑
i∈Ck

pi, (5)

µk =
1

wk

∑
i∈Ck

pixi, (6)

σ2
k =

1
wk

∑
i∈Ck

pi(xi − µk)2. (7)

WhereCk (k = 1, 2, . . . , k0) is a set of bin indices in the
k-th cluster.

C. Contour Complexity

Algorithm 2 shows how to calculate the contour complexity
based on a grayscale image. The standard contour lengthL∗

is defined as the contour length of the nuclear area extracted
by the segmentation method described in Section III-A.

Using contour sequence{L0, L1, . . . , L255}, the contour
complexity is defined as

Fcc =
∑

i

[(
Li

L∗

)
− 1

]
I{Li>L∗}, (8)

whereLi is the total contour length when the threshold isi,
and L∗ is standard contour length. The symbolIA takes a
value of 1 when conditionA holds, and 0 otherwise.

We call this feature, which is calculated from the sequence
of contour lengths,contour complexity. The contour com-
plexity is the quantization of chromatin texture unevenness.
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Fig. 3. Three-dimensional visualization of contour sequence. (a) to (c) benign cell; (d) to (f) malignant cell. The edge of area painted in color (blue to
red) indicates the contour corresponding to the different thresholds. Thresholds (θ) are indicated in the figure.

This feature is based on the observation that when the degree
of chromatin unevenness is high, many small clusters tend
to be obtained in the nuclear area by thresholding, and the
total contour length of these small clusters becomes longer.

Since contour length also becomes longer as the nuclear
size becomes large, we normalized eachLi by dividing it by
L∗ so that the contour complexity is independent of nuclear
size. In this way, we can evaluate the effectiveness of the
contour complexity alone without the influence of nuclear
size, which is also an important feature of cancer cells.

Fig. 2 shows examples of contour length sequence. The
contour complexity value corresponds to the gray area in
Fig. 2b. A three-dimensional visualization of the contour
sequence is shown in Fig. 3. It is clear from this figure that
when the degree of chromatin texture unevenness is high, the
total contour length tends to become longer (e.g., compare
Fig. 3b and Fig. 3e).

D. Fractal Dimension

To compare the validity of our method with that of
previously employed methods, we conducted fractal analysis
for the same samples. As a fractal feature, we used the
maximum value of the fractal dimensions

D = max{Di | i = 0, 1, . . . , 255}, (9)

whereDi is the fractal dimensions obtained at the threshold
i. The box-counting method is used to calculate the fractal
dimension at each threshold.

IV. RESULTS AND DISCUSSION

To evaluate the effectiveness of the proposed feature for
cancer cell classification, we compared the values of contour
complexity between benign cells (n = 30) and malignant
cells (n = 37). These cells were collected from paraffin-wax
embedded sections of human breast tissue (two malignant
tissues and two benign tissues).

Table I shows the statistics and Fig. 4 shows the distri-
bution of the contour complexity for benign and malignant
cells, respectively. It is clear from the table that the contour
complexity of the malignant cells is significantly greater than
that of benign cells (p < 10−6, Kolmogorov-Smirnov test)1.
No benign cells had a contour complexity greater than 5.0
and there were 10 cells with zero contour complexity. On
the other hand, a majority of the malignant cells (21 out of
37) had a contour complexity greater than 5.0.

For the comparison, we applied the fractal dimension
analysis [6] to the same samples. Table II and Fig. 5 show

1The Kolmogorov-Smirnov test is a non-parametric test to determine if
two sample distributions are identical (can be used when the distributions are
unknown). The very low score of10−6 confirms that these two distributions
are not identical.
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Fig. 4. Distribution of contour complexity. (a) benign cells; (b) malignant
cells.

TABLE I

STATISTICS OF CONTOUR COMPLEXITY

benign (n = 30) malignant (n = 37)
mean 0.35±0.17 19.6±4.1
maximum 4.6 84.9
minimum 0 0

the statistics and distributions of fractal dimensions. The
fractal dimension of malignant cells was significantly larger
than that of benign cells (p < 0.01, Welch’s t-test)2, which
is consistent with the results obtained with our method.
However, as shown in Fig. 5, it is difficult to distinguish
malignant cells from benign cells from the fractal dimension
only. This comparison showed that contour complexity is
a more sensitive feature for chromatin-texture-based cancer
cell classification than the fractal feature.

Fig. 6 shows examples of cells with low and high contour
complexity values. These cells were collected from the ma-
lignant tissues. Although cells with the contour complexity
less than 5.0 ( Fig. 6a, Fig. 6b, and Fig. 6c) were collected
from the malignant tissue, they do not necessarily appear to
be malignant from the point of view of chromatin texture. In
that sense, the values obtained with our proposed method
are consistent with our intuitive judgment. The contour
complexity value becomes especially greater when nucleoli
appear in the nuclear area (Fig. 6d). The existence of nucleoli
is also one of the important features of malignant cells. Here,
too, we can see that the results obtained with our method are

2Welch’s t-test provides a measure whether the two distributions are the
same, under the assumption that they have normal distributions, but different
variances.
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Fig. 5. Distribution of fractal dimensions. (a) benign cells; (b) malignant
cells.

TABLE II

STATISTICS OF FRACTAL DIMENSION

benign (n = 30) malignant (n = 37)
mean 1.19±0.009 1.225±0.0072
maximum 1.26 1.30
minimum 1.07 1.13

consistent with what our intuitive judgment tells us.
Although both contour complexity and fractal dimen-

sion features have been found to be effective means of
distinguishing malignant and benign cells, the correlation
coefficient (ρ) between two features is not so high (ρ=0.29
and 0.32 for malignant and benign cells, respectively). It
is therefore considered that both features capture different
aspects of chromatin texture.

With the EM-based segmentation method and the param-
eter initialization method described in the Sections III-A
and III-B, the appropriate thresholds for the nuclear area
extraction, which ranged from 30 to 98 in grayscale value,
are adaptively determined and the contour complexity for
67 images are calculated in a fully automatic way without
human intervention. The parameter initialization algorithm
takes no longer than 1.0 second3 in all images which is much
faster than existing optimization methods such as a genetic
algorithm and simulated annealing.

The results suggest that contour complexity is much more
sensitive than the fractal dimension feature for the detection
of individual cancer cells.

3On Pentium Xeon 3.6 GHz workstation.
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Fig. 6. Examples of cells with low and high contour complexity values. Those cells were collected from the malignant tissues. low value group: (a)
0.007, (b) 0.009, (c) 0.05; high value group: (d) 84.85, (e) 74.98, (f) 58.36. Scale bars, 5µm.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new approach to chromatin texture char-
acterization,contour complexity, is proposed and its ef-
fectiveness in cancer cell classification is evaluated. This
approach is applied to cells collected from benign and
malignant breast biopsy tissues. The contour complexity
value of malignant cells is significantly greater than that of
benign cells.

To achieve automatic feature extraction, we used EM-
based segmentation and an effective initial parameter search
method for EM. The segmentation method explained in
Section III makes it possible to perform the feature extraction
in a fully automatic way and applicable to the tissue im-
ages stained by other methods, such as hematoxylin-eosine
staining and immunostaining. However, a more sophisticated
nuclear segmentation method will be needed for overlapping
nuclei.

The proposed method appears to grasp different aspects
of chromatin texture than fractal analysis, which is widely
used in the field of pathology. This means it is more effective
when both features are used as a feature vector for machine
learning methods. This will be our future work.

It should be emphasized that the results are obtained
using paraffin-wax embedded biopsies on slides (i.e., neither
frozen sections nor cultured cells), which is actually used for
pathological diagnosis. This fact implies that our results are
directly connected to real-life cancer diagnosis.
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