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Abstract— For medical images diagnostically important in-
formation often lies in the texture. Fractal dimension may be
used as an index of irregularity. In this paper we describe
the adaptation of the intensity difference scaling method for
assessment of the fractal dimension D in the irregular regions of
interest (irregular ROI-s). This is of great importance because
the investigated regions are often small. It is difficult to fit
entire regular region of interest within the examined organ with
simultaneous inclusion of the relevant fragment, and at the same
time to avoid the influence of boundaries. Fractal analysis of
various kinds of medical images: panoramic radiography and
nuclear medicine scan showed the validity of assessment of D
in irregular ROI-s.

I. INTRODUCTION

FRACTAL analysis has been successfully applied in many
areas of science and technology. Applications in medicine
concern modelling of tissues and organs constitution and
analyzing of different kinds of images and time series [1].
The fractal objects are characterized by [2]: large degree
of heterogeneity, self-similarity, and lack of a well-defined
scale. Notion ,,self-similarity” means that small-scale struc-
tures of fractal set resemble large-scale structures.

The fractional Brownian motion (fBm) following the
Mandelbrot’s fractal theory, may be used to describe the
roughness of natural surfaces. It regards naturally occurring
surfaces as the end result of random walks [3]. Medical
images can be treated as surfaces with the intensity at each
point (x,y). For nuclear medicine images, the intensity I is a
number of counts of gamma radiation quantum, whereas for
radiological or ultrasonic images the intensity is estimated
by the grey levels. For different surfaces the values of
the fractal dimension are in the range between 2 and 3.
A smooth surface is characterized by fractal dimension of
about 2; rougher surfaces have higher fractal dimensions. The
fractal dimension may be used as an index of heterogeneity.
In the language of mathematics, fractals are the sets for
which the Hausdorff-Besicovitch dimension, or the fractal
dimension D are greater than topological dimension. The
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fractal dimension may be calculated in many ways since
Hausdorff-Besicovitch’s definition is too complicated for
practical estimation [4], [5]. However, it has helped to create
many other definitions and subsequent algorithms. Hausdorff
definition is a mathematical foundation of various methods of
the fractal dimension estimating. Thus, according to various
algorithms, there are various kinds of fractal dimension.

For all methods, there is relation between fractal dimen-
sion and various kinds of scales: length, area size, volume,
intensity, frequency. The relationship between selected para-
meters is governed by a power-law

M(δ ) = const ·δ exponent (1)

where M(δ ) is a measure, δ is a scale, exponent is directly
related with the value of fractal dimension

Among the algorithms are: rectangular prism surface area
method [6]; triangular prism surface area method [7]; power
spectral density method [8], [9]; methods based on math-
ematical morphology: flat structuring element method [10]
and cover blanket method [11]; dispersion analysis [12], [13];
variogram analysis [14]; intensity difference scaling method
[15]; box dimension [16], [17].

These methods were applied in the analysis of various
kinds of medical images [18], [19], [20], [21], [22], [23]. In
all the cases the studies were performed in regular regions
of interest (regular ROI-s) — mostly square regions. In
the literature calculation of fractal dimension in irregular
regions of interest was mentioned only once but without the
description of the algorithm [13]. Oczeretko et al. showed
that in the case of the lung scintigrams, D = 2.23 in the
region containing the boundary of the organ and D = 2.59
within the organ. Great local irregularities and sharp edges
of the examined objects accounted for estimated values of
fractal dimension D≈ 2 [24]. In order to avoid the influence
of the boundaries, and other structures it would be proper to
calculate the fractal dimensions in irregular ROI-s.

In this paper we describe the adaptation of the intensity
difference scaling method for the assessment of the fractal
dimension in the irregular regions of interest.

II. INTENSITY DIFFERENCE SCALING METHOD

Intensity difference scaling method was introduced by
Chen et al. [15]. The texture of the intensity image I(~r) can
be modeled by a fractional Brownian function [2]:

Pr
(

I(~r +∆~r)− I(~r)
|∆~r|H < y

)
= F(y) (2)



where ~r = (x,y) — the position in two dimensional space,
I(~r) — the intensity of pixel at position ~r, F(y) — the
cumulative distribution function, H — Hurst coefficient. H is
the constant and lies in the range 0 < H < 1. The relationship
between the fractal dimension D the Hurst coefficient H is
D = 3−H. From (2) we can derive [24]:

E{[I(~r +∆~r)− I(~r)]2}= |∆~r|2H ·σ2 (3)

where E is the expectation, σ2 is the variance of the F(y).
Defining:

∆I~r = |I(~r +∆~r)− I(~r)| (4)

and taking the logarithm of (3), we can obtain:

logE{∆I2
~r }= 2H log |∆~r|+2logσ2 = 2H log |∆~r|+ logC

(5)
Since both H and C are constants, (5) implies that a plot
of E{∆I2

~r } as a function of |∆~r| on the log-log scale lies on
the straight line and its slope is H. This plot is called fractal
plot. Equation (5) was simplified by Chen et al. to [15]:

logE{∆I~r}= H log |∆~r|+ logC (6)

Some authors have doubt about such a simplification,
but the others bring out the validity of this algorithm in
classification of ultrasonic and CT liver images [25], [26],
[27].

In realization of this algorithm for given M×M image,
the average of the absolute intensity difference id(s) of all
pixel pairs with scale s was defined as follows:

id(s) =

M−1
∑

x1=0

M−1
∑

y1=0

M−1
∑

x2=0

M−1
∑

y2=0
(| I(x2,y2)− I(x1,y1) |)

number of pixel pairs for scale s
(7)

where: I(x1,y1) and I(x2,y2) are two pixels in the image
with intensity values between 0 and 255; x1, y1, x2, y2 =
1,2,3, . . . ,M−1;

s – scale (distance between two pixels):

s =
√

(x2− x1)2 +(y2− y1)2 (8)

The multiscale intensity difference vector MIDV was intro-
duced:

MIDV = [id(1), id(2), id(3), . . . , id(s)] (9)

Fig. 1 shows 3× 3 image. There are 5 possible scales, 5
possible distances between pixels. The total number of pixel
pairs analyzed for these scales is 36. For 27×27 images the
number of all scales is 314, for 63×63 images the number
of all scales is 1529, and the total number of pixel pairs
analyzed for these scales is 31505922.

To reduce the number of elements of MIDV vector,
normalized NMIDV vector was used in which only integer
scales occurred. Non-integer scales were not lost. For ex-
ample, information from scales:

√
5,
√

8 (2.2361, 2.8284)
was included in scale 2. For fractal surfaces the relationship
between MIDV and scale s is governed by a power-law:

MIDV = CsH (10)

Fig. 1. 3× 3 image. There are 5 possible scales. The total number of
analyzed pixel pairs for these scales is 36.

Value of H was assessed by using least-squares linear re-
gression to estimate the slope of line of MIDV , versus s in
log-log scale. Fractal dimension was obtained as:

D = 3−H (11)

III. IRREGULAR REGIONS OF INTEREST
By means of the intensity difference scaling method we

could assess the values of fractal dimension in irregular ROI-
s, which is impossible by means of other algorithms.

Figure 2(a) shows the 5×5 image with 25 pixels and 14
possible scales: 1,

√
2, 2,

√
5,
√

8, 3,
√

10,
√

13, 4,
√

17,√
18,

√
20, 5,

√
32. The total number of pixel pairs analyzed

for these scales is 300. Fig 2(b) illustrates manually drawn
irregular region of interest R with 12 pixels and 9 possible
scales. In calculation only pixels belonging to regions R were
used.

In practical realization of this algorithm (Fig. 3) the irregu-
lar regions of interest were drawn manually using a roipoly
Matlab function (Matlab v. 5.2 for Windows (MathWorks,
Inc., USA). This function is a part of the Image Processing
Toolbox and returns a binary image, a binary mask M. The
mask contains 1’s for all pixels that are part of the ROI and
0’s everywhere else. In order to perform a fractal analysis in
the irregular regions of interest only pixels which coordinates
belong to mask M were taken into account.

(x1,y1),(x2,y2) ∈M

Fig. 3(a) shows the 63-by-63 image with irregular ROI.
The obtained mask was shown in Fig. 3(b). The algorithm of
assessing of fractal dimension was implemented in C++. The
synthetic surface which is shown in Fig. 3, was generated for
D = 2.60, estimated fractal dimension of such image is 2.585,
estimated fractal dimension in irregular region of interest is
2.591.

IV. EXPERIMENTS
A. Synthetic Fractal Textures

Spatially isotropic synthetic surfaces (fBm images) which
ranged in fractal dimension from 2.05 to 2.95 (2.05, 2.10,



Fig. 2. (a) 5×5 image. There are 14 possible scales. The total number of
pixel pairs analyzed for these scales is 300. (b) Manually drawn irregular
region of interest R with 12 pixels and 9 possible scales.

2.20, 2.30, 2.40, 2.50, 2.60, 2.70, 2.80, 2.90, 2.95) were
generated by means of Matlab function synth2, that is a part
of FracLab, a Fractal Analysis Software (www.scilab.org, e-
mail: FracLab@inria.fr). Here incremental Fourier synthesis
method was implemented to generate 2-D self similar images
[28]. Fig. 4 shows an example of such surfaces with fractal
dimensions equaling 2.20 and 2.80. For each value of fractal
dimension thirty 63-by-63 images were obtained. The results
of fractal analysis of such images by means of the intensity
difference scaling method are tabulated in Table I. For each
synthetic surface, an irregular region of interest which is
shown in Fig. 3 was chosen. Table II shows the results
of fractal analysis in irregular regions of interest drawn on
synthetic textures. For each original dimension, the fractal
dimension D and standard deviation σ were obtained in 30
realizations. Mean squared error (MSE) for the 330 samples
for each table is calculated from the formula [29], [30]:

MSE =
11

∑
i=1

[(meanD−D j)2 +σ2
j ] (12)

where the subscript j indicates a series of 30 runs. Mean
squared errors for data represented in Tables I and II equal
0.0020, and 0.0017 respectively.

Fig. 3. Synthetic image of fractal dimension D = 2.60 with manually drawn
irregular region of interest, b) binary image — mask M.

Fig. 4. (a) Synthetic fractal texture with fractal dimension D = 2.20, (b)
3-D representation of this texture, (c) Synthetic fractal texture with fractal
dimension D = 2.80, (d) 3-D representation of this texture.



TABLE I
FRACTAL DIMENSION FOR SYNTHETIC SURFACES (IMAGES

63-BY-63)

Original dimension Estimated dimension
mean±standard deviation

2.05 2.103±0.102
2.10 2.197±0.138
2.20 2.276±0.139
2.30 2.311±0.124
2.40 2.451±0.116
2.50 2.521±0.124
2.60 2.587±0.117
2.70 2.721±0.096
2.80 2.820±0.062
2.90 2.907±0.042
2.95 2.958±0.018

TABLE II
FRACTAL DIMENSION FOR SYNTHETIC SURFACES

CALCULATED IN IRREGULAR REGIONS OF INTEREST

Original dimension Estimated dimension irregular regions
mean±standard deviation

2.05 2.122±0.113
2.10 2.141±0.109
2.20 2.248±0.132
2.30 2.314±0.137
2.40 2.467±0.107
2.50 2.560±0.116
2.60 2.610±0.118
2.70 2.704±0.143
2.80 2.821±0.061
2.90 2.903±0.075
2.95 2.964±0.015

B. Pantomogram (panoramic radiograph)

Pantomogram is a panoramic radiographic record obtained
by a pantomograph. It shows maxillary and mandibular den-
tal arches and their associate structures. Pantomograms were
digitized with an Umax Alpha Vista II scanner (LaserSoft
Imaging Inc., USA), interfaced through a scan software
program (SilverFast Applications) to a computer. Fig. 5
shows the pantomogram with two marked regions: normal
region A, and region B with pathological changes.

In the process of reinclusion, the erupting or already
erupted tooth submerges in the bone creating a variety of
clinical problems. The diagnosis of reinclusion is based
mainly on recognized clinical and radiological symptoms.
The characteristics of reincluded teeth in pantomograms
include pathological root resorption and changes to the
adjacent bone structures. Quantitative evaluation of bone
changes may be estimated by means of fractal dimension.

The sizes and shapes of the ROI-s were determined by the
sizes and shapes of the interdental bone to be analyzed. If
the number of elements in the analyzed region of a picture
is too small the differentiation between various pathological
states may fail.

Figure 6 shows the regular regions of interest from Fig.
5. Inside of these regions irregular ROI-s are marked. The

Fig. 5. Panoramic radiograph with marked regions: normal region A, and
region B with pathological changes.

TABLE III
RESULTS OF FRACTAL ANALYSIS IN IRREGULAR AND
REGULAR REGIONS OF INTEREST MARKED IN FIG. 6

Regions Fractal dimension Number of scales
Regular ROI – Fig. 6(a) 2.657 20096
Regular ROI – Fig. 6(b) 2.865 10584
Irregular ROI – Fig. 6(a) 2.513 2305
Irregular ROI – Fig. 6(b) 2.245 1352

sizes in pixels of regular ROI-s are: 245× 245 (Fig. 6(a)
and 175× 175 (Fig. 6(b)). Table III summarizes the results
of fractal analysis in all regular and irregular regions. When
the irregular ROI contain the boundary and fragment of the
teeth the value of fractal dimension is low (D = 2.245).

C. Nuclear medicine scan — scintigram

Scintigraphy is a method of organ visualizing which
enables us to describe its shape, dimensions and position
by means of the radiopharmaceutical tracers accumulated
in the organ after oral or intravenous administration to the
patient [31]. Nuclear medicine scans (scintigrams), which
are pictures obtained by gamma camera have small image
matrices (128×128 or 64×64). Fig. 7 illustrates the result
of fractal analysis of liver scan in the irregular regions
of interest. The region with fractal dimension D = 2.53
corresponds to the foci of metastases. Low value of fractal
dimension D = 2.16 is in the region containing the boundary
of the liver. In the region within of the liver D = 2.68.

V. CONCLUDING REMARK

As it is difficult to fit the entire regular region of interest
within the examined organ with simultaneous inclusion of
the relevant fragment avoiding the influence of boundaries
and other kinds of unnecessary structures at the same time,
we introduced a method to calculate the fractal dimension I
irregular ROI-s. The results obtained show that our findings
may be of great importance for diagnostic purposes.
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