
  

  

Abstract—A population level model of the basal ganglia has 
been shown to reliably reproduce the local field potential (LFP) 
activity recorded from subthalamic nucleus (STN) during 
typical microelectrode recording sessions. The purpose of the 
present work is to investigate optimization methods that can be 
used to fit that model to actual recorded LFPs. For that, we 
utilize data derived from seven parkinsonian subjects prior to 
the permanent implantation of the deep brain stimulation (DBS) 
electrode. For the fitting, five optimization methods are used, 
combined with two methods for estimating the error between 
the actual recorded and the model predicted LFP signals in the 
frequency domain. The procedures are focused on re-generating 
the characteristic beta peak of the STN LFP. The results 
indicate that the model is able to reproduce the beta peak in 
various frequencies in the range of both low and high beta, 
while at the same time, the values of the critical parameters 
bringing the model in that area of behavior reveal the crucial 
role of the synaptic strengths in Parkinson’s disease 
pathophysiology. 

I. INTRODUCTION 
ICRO- electrode recordings (MERs) are routinely 
acquired during typical electrode implantation 

procedures for the deep brain stimulation (DBS) of the 
subthalamic nucleus (STN) in Parkinson’s disease [1]. 
Neurologists empirically assess the resulting recording at 
each point anticipating the properties of the underlying 
tissue. The acquisition takes place prior to the final fixation 
of the stimulating electrode’s tip and after overnight removal 
of anti-parkinsonian drugs. Usually, the recording session 
consists of moving the micro-electrode along a predefined 
line grid of points that includes the theoretical target. The 
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latter is the Posterior part of the STN, having been 
approximately defined by analysis of patient’s MRI data.  

The MERs gathered in that way are information rich, 
containing both local field potentials (LFPs) and spiking 
activity [2]. It is thought that the former is contained in the 
low range of the frequency spectrum, whereas the latter 
appears in the high frequencies [3]. That’s why the usual cut-
off frequency used for separating these two kinds of activity 
via low-pass filtering is 100 Hz [4]. 

Both LFPs and spiking activity carry a wide spectrum of 
activity patterns, most of which remain to be identified and 
established. However, in what particularly concerns the 
content of the LFPs, an established pattern observed in the 
LFPs of the STN of parkinsonian subjects is the dominant 
high, sharp peak in the beta band [5]. This is thought to 
reflect the pathological behavior of the basal ganglia and the 
STN in particular, in Parkinson’s disease. Functionally, it is 
associated with the kinetic problems characterizing 
parkinsonian subjects, as it is thought to be produced by the 
mechanisms generating the characteristic kinetic stiffness. 

Moving from the facts about the LFPs towards a modeling 
perspective, these mechanisms are simulated in order to 
reproduce the beta peak in various frequencies, providing 
insights about both the signals and the underlying 
functionality. This is described in a recent work [6], where 
the authors present a biologically plausible population level 
model of the basal ganglia that generates LFPs of the STN. 
The model has provided indications concerning the role of 
the duration and the amplitude of the post-synaptic potentials 
(PSPs) in the pathophysiology of Parkinson’s disease. At the 
same time, the simulations have revealed the conditions 
under which the LFPs of the STN express a high peak in the 
beta band and the root mechanistic cause for that. 

Using this model, the present work aims at taking 
advantage of actual recorded LFP data to constrain the 
model’s critical parameters of PSP amplitude and duration. 
This is performed in order to fit its reproduced LFPs of the 
STN to the recorded ones, which express the characteristic 
beta band peak. To achieve that, five different optimization 
algorithms are combined with two distinct measures of 
distance (error objective functions) between LFPs. The 
actual recordings have been derived from seven parkinsonian 
subjects having undergone the DBS surgical procedure. In 
the following sections, we first describe in detail the 
acquisition procedure and the selected recorded signals for 
the fitting. Then, a brief presentation of the population level 
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model of the basal ganglia is given, followed by the fitting 
methodology used. Finally, the results and the conclusions of 
this work are summarized. 

II. RECORDED LOCAL FIELD POTENTIAL SIGNALS 
The recorded signals that we used to fit the output of the 

model to have been derived by the typical recording 
procedure generally outlined in the introduction. 
Specifically, the signals are acquired by means of an array of 
five microelectrodes in cross formation (known as Ben Gun) 
[7], entering in parallel into the brain tissue. The different 
electrodes are referenced by an anatomical term indicating 
position, namely Central, Anterior, Posterior, Lateral and 
Medial. The distance between the tips of the peripheral 
electrodes from the central is 2 mm. The original sampling 
frequency of the recordings is 24 KHz and their duration 10 
s. The line grid of the points in the brain where recordings 
actually take place varies for each subject, but there is a 
general pattern that dictates a range between -4 mm and +2 
mm (the reference is the pre-determined theoretical target 
inside the STN considered to lie at 0 mm). The usual 
intermediate stops of the electrode tips are at -3, -2.5, -2, -
1.5, -1, -0.5, 0, +0.5, +1, +1.5 mm points. At each of these 
positions, usually 2 recordings are performed. Therefore, a 
total of 24 recordings are generated for each one of the five 
electrodes in the array, providing a total of about 120 
recordings for each subject.  

For each set of recordings, not all of the acquired signals 
are originated from the STN. In practice, the exact 
distribution of the brain sources producing the signals 
depend both on the specific line grid used for the recordings 
and on the insertion angle of the electrodes. The electrode 
that produced the recording matters as well, because the 
labeling of the points follows the Central electrode’s course. 
Finally, the individual anatomy of each subject plays 
important role as well. In spite of these, it is expected that 
the probability of a recording to origin from the STN gets 
higher when it corresponds to points closer to the 0 mm 
point. Thus, since in this work we are interested in 
recordings from the STN that exhibit a dominant beta peak 
in their power spectral density (PSD) function, we limit our 
exploration to the recordings from the Central electrode in 
the range of -2 to +2 mm points, analyzing them in terms of 
their PSD function. Eventually, we end up in selecting one 
representative recording from each subject (denoted by s33, 
s36, s42, s50, s51, s52, s54), acquired from the Central 
electrode in positions that are summarized in the legend of 
Fig. 1. In that figure, the PSD functions of all the seven 
selected recordings are depicted. It is interesting to observe 
that each recording exhibits the characteristic peak in 
different frequency points, though all lying in the beta range 
(from low beta: 15 Hz, to high beta: 35 Hz). Also, although 
not presented here due to space limitations, from the overall 
available recordings we have noticed that the beta peak, 
when present, persistently appears at the same frequency 

point for all the recordings from the same subject. That 
indicates a quite interesting personalized pattern for the exact 
point of the peak. 

III. THE POPULATION LEVEL MODEL OF THE BASAL 
GANGLIA 

The full description of the population level model of the 
basal ganglia, on which the present fitting approach is 
based, is out of the scope of this work. However, we 
provide a brief report, focusing on the properties of the 
model that are mostly relevant to the fitting to LFP data. 

The modeling formulation is based on the early works 
of Lopes Da Silva [8], [9], Freeman [10] and Zetterberg 
[11]. They have suggested a methodology with which 
rhythms of the cortical structures can be modeled and 
explained. Recently, Wendling et al. [12], [13] have also 
used that methodology to generate depth-EEG signals in 
epileptic states. In our previous work, we have adapted the 
methodology to model the basal ganglia’s LFP generating 
mechanisms, incorporating all major nuclei and an 
extensive set of pathways [6]. A block diagram of the 
model is presented in Fig. 2.  

The primary output of the model is the LFP activity 
from the STN, while at the same time the firing rates of 
the nuclei over time are obtained. The model is governed 

 
Fig. 1.  PSD functions of the seven selected LFP recordings, one from 
each subject. Subject’s identifier is presented above the corresponding 
trace. These PSD functions are the targets for model fitting. The 
respective position of the central electrode for each recording is: s33 0, 
s36 -1, s42 0, s50 0, s51 -0.5, s52 +1, s54 -0.5 (all in mm).  
 

 
 
Fig. 2.  Block diagram of the population level model of the basal 
ganglia that is fitted to the PSD of the recorded LFP recordings. 
 



  

by a total number of 52 parameters, 17 of which control 
the excitability of the populations, 11 are synaptic 
constants and 24 are related to the amplitudes and the 
durations of the post-synaptic potentials (PSPs) of each 
synaptic pathway. The latter are considered to be the 
critical parameters, being affected by the lack of dopamine 
taking place in Parkinson’s disease [14]. Under that 
condition, the desensitization of dopamine receptors leads 
to intensification (D2 receptors) or dampening (D1 
receptors) of the PSPs. Through the simulations of the 
model, it is shown that it is this modification of the values 
of all the synaptic parameters that consists the critical 
alteration leading to the parkinsonian state. The latter is 
identified by the expressed beta peak in the model 
generated LFPs and the consistent to clinical observations 
firing rates of all the nuclei. 

 Because of this significance of the synaptic parameters, 
we have chosen these to be the set of free parameters for 
fitting the model’s output to the recorded LFPs. The 
model is mathematically equivalent to a set of 24 
differential equations, thus fitting to 24 free parameters is 
a feasible task. 

IV. FITTING METHODOLOGY 
The fitting approach is based on the measurement of the 

error between the recorded and the predicted signals from 
the model. This error is normalized in the [0, 1] range and 
corresponds to a distance estimation, which is attempted 
to be minimized by means of several optimization 
algorithms. As error measures, we have selected two 
different objective functions: the Root Mean Squared 
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of the signals (thus, both methods work in the frequency 
domain). The PSD functions of both actual and simulated 
LFPs are obtained by the Welch’s modified periodogram 
method. Also, because we focused our approach at 
reproducing the beta band peak, we only considered the 
range of frequencies up to 45 Hz.  

The optimization algorithms used are a mesh-adaptive 
direct search algorithm [15]-[17], the classic genetic 
algorithm [18]-[21], simulated annealing [21]-[23], and 
two combinations of the genetic algorithm and simulated 
annealing with the direct search algorithm. Bound 
constrains were used for all methods, reflecting the 
plausible physiological values of the free parameters. 
Details about the algorithms and the parameters used for 
each are summarized in Table I. The optimal set of values 
for the parameters of each method was decided by 

extensive performance evaluation trials. The fitting results 
obtained by different sets of parametric values were 
compared and the best set in terms of minimum and mean 
fit error was chosen for each method. The trials were 
performed twice, for both objective functions. Thus, some 
parameters had different values for RMSE and PCC 
methods. 

The constraining of the parameter of the allowed 
maximum function evaluations (or the maximum number 
of generations for GA) is referred as the computational 
budget of the methods. That is used to control the 
necessary time for the methods to be completed, according 
also to the time needed for the evaluation of the objective 
function. 

All the fitting procedures were performed in the Matlab 
7.5 environment and run in a standard desktop PC, with an 
Intel Core 2 Duo processor and 2 GB of RAM. Because of 
the stochasticity of the fit for each trial (imposed either by 
the algorithm and/ or the random selection of the initial 
point), we repeated each method 40 times, in order to 
increase the possibility of obtaining the best possible fit 
result. Every trial needed about half an hour to complete, 
so each case (determined by the optimization algorithm, 
the error estimation method and the specific LFP target 
used) took about 20 hours. Since there were 70 cases (5 
optimization algorithms x 2 error estimation methods x 7 
possible target signals), a total of 1400 computational 
hours were necessary, divided in two parallel threads, 
because of the use of the two-core processor.  

TABLE I 
FITTING METHODS 

METHOD PARAMETERS REFERENCES 

Direct-
Search  
Mesh 

Adaptive 
Algorithm  

(DS) 

Accelerate Mesh: Off (RMSE),  
On (PCC) 

Scale Mesh: On 
Mesh Tolerance: 10-4 

Function Tolerance: 10-5 
X Tolerance: 10-4 

Function Evaluations: 3000 

[15]-[17] 

Genetic 
Algorithm 

(GA) 

Populations: 2x50 (RMSE),  
1x100 (PCC) 

Selection: stochastic uniform  
Mutation: adaptive feasible 

Crossover: 80%, scattered, 5 elite 
individuals  

Migration: 10% both directions, 3 
generations 

Function Tolerance: 10-5 
Generations: 30 

[18]-[21] 
 

Simulated 
Annealing 

(SA) 

Initial Temperature: 1000 (RMSE), 
5000 (PCC) 

Temperature and Annealing 
Function: Fast 

Function Tolerance: 10-5 
Function Evaluations: 3000 

[21]-[23] 
 

GA+DS 
Parameters of the single algorithms 
with half function evaluations each 

(3000 total) 
 

SA+DS 
Parameters of the single algorithms 
with half function evaluations each 

(3000 total) 
 

 



  

V. RESULTS 
 The overall fitting results are initially concentrated 

according to the specific targeted LFP recording and the 
objective function used. Then, for each LFP, the set of 
parametric values giving both the best RMSE and PCC 
errors is selected. Table II summarizes the best fit result 
for each of the seven LFP recordings used, regarding the 
best error achieved and the method that led to that. Table 
III presents the methods’ mean errors of all trials for all 
cases considered. 

It turns out that the DS method produces most of the 
best fits (5/7). The rest two are given by the GA and the 
combination of SA with DS. Regarding the mean error of 
all trials, DS is the best for the RMSE, but is suffers a 
large error for the PCC objective function. The best in the 
latter case is the GA, which is not significantly worse than 
DS in the RMSE case. SA is second best for both RMSE 
and PCC. The combinatory schemes are worse in all cases. 

In order to further analyze the performance of the 
optimization methods and probably select one of them, we 
must take into account the factor of computational budget 
with which we performed the fitting trials. The reason of 
using it was on the one hand to benchmark the methods 
with strict computational requirements, implying an 
importance for this factor in selecting the best method. On 
the other hand, computational budget had a practical 
meaning, allowing all the series of trials not to need too 
much time to complete.  

Because of the special characteristics of each 
optimization algorithm, it is expected that the GAs are 
more likely to perform better if the budget is allowed to be 
increased. That is because DS follows a path towards a 

local minimum that is in most cases adequately 
approached by the given budget. No escape from that 
minimum is then feasible for DS. SA on the other hand 
follows the drop of the temperature parameter, which is 
always completed with the given budget. In contrast, GAs 
may continue seeking for a best local minimum throughout 
the evolution of generations, broadly covering the error 
hyper-plane with a diversity of different individuals. So, 
since GAs are good enough (if not best) for the given 
computational budget, they are more probable of giving 
even better results by loosening it. Considering also the 
ability of DS to find good fits (exhibiting a rather best-or-
nothing behavior), maybe the combination of GAs with 
DS could also be more productive with increased 
computational budget. 

Regarding the objective functions, PCC is more 
efficient, giving 4/7 best fits, although RMSE has been 
also proven capable of providing successful fitting results. 
GAs are the best with PCC, with GA+DS combination 
closely following, so it seems that the methods of GA with 
PCC and GA+DS with PCC are those that we will select 
for further work in trying to find the best possible fits. 

Regarding the present fitting results, the best fitted LFP 
PSDs for all subjects are depicted in Fig. 3. Despite some 
inaccuracies, fitting the model to every signal’s beta peak 
is successful, irrespectively of the exact frequency point of 
the peak in the beta range. That enables us to consider the 
model as being capable of reproducing the characteristic 
parkinsonian signs in a personalized fashion.  

Fig. 4 summarizes the sets of values of the parameters 
that produce the best fit to each of the seven selected 
actual recordings. Twenty-four (24) subplots are included, 
one for each free parameter that varies during the fitting. 
Any single subplot contains 7 distinct points, reflecting the 
value of the corresponding parameter for the best fit to 
each of the seven signals. Overall, it is evident that several 
parameters are driven to the range of pathological values 
for each subject. In fact, if we specifically consider the 
strength of the pathways by co-examining for each both 
the amplitude and duration parameters, in most cases at 
least one of these parameters is driven to pathological 
values. Therefore, since only the amplitude or the duration 
is enough for any pathway to be characterized 
pathological, most pathways do seem to turn pathological 
for the best fit to be achieved. 

In order to establish this tendency of the critical 
parameters, we also performed two extra series of trials 
where we bounded either the amplitude or the duration of 
the synaptic pathways within the range of normal values. 
Using only the best fitting method in each case, as derived 
by the full approach, it turned out that in this way the 
model is never getting successfully fitted. The final errors 
of the trials kept being high and the traces were far from 
expressing any match to the actual PSDs.   

TABLE III 
METHODS PERFORMANCE 

LFP Mean RMSE 
(0-100, 40 trials) 

Mean PCC  
(0-100, 40 trials) 

 DS GA SA 
GA 
+ 

DS 

SA 
+ 

DS 
DS GA SA 

GA 
+ 

DS 

SA 
+ 

DS 
s33 4 3.7 10 5.3 12 76 10 22 13 33 
s36 23 21 22 21 22 56 45 49 53 51 
s42 2.7 2.8 8.2 3.5 10 57 1.6 12 2.6 18 
s50 9.8 9 15 11 17 43 9.7 32 25 46 
s51 7.6 7.9 11 8.7 12 65 13 23 17 29 
s52 5.2 5.4 10 5.8 11 55 7.5 18 8.6 24 
s54 8.3 12 15 12 16 51 22 30 34 41 
Avg 13.5    14     13.8   14.6   14.3 58 23 27 28 35 

 
 

TABLE II 
FITTING PERFORMANCE 

LFP 
BEST FIT 

RMSE 
ERROR 

BEST FIT 
PCC 

ERROR 

BEST FIT 
METHOD 

s33 0.0284 0.0165 DS RMSE 
s36 0.2284 0.3919 SA+DS PCC 
s42 0.0240 0.0084 GA PCC 
s50 0.054 0.0279 DS PCC 
s51 0.0664 0.0741 DS RMSE 
s52 0.0317 0.0166 DS PCC 
s54 0.0588 0.0684 DS RMSE 

 
 



  

 
 

 
Fig. 3.  The fitting results for all seven selected LFP PSD functions. Solid lines correspond to the simulated best fitted PSDs. Dotted lines are the 

actual recorded LFPs’ PSDs. Subject identifier is noted on the top of the traces. 
 

 
 
Fig. 4.  The values of the 24 free parameters after fitting to each LFP PSD function. For each subject, the best achieved fit is considered. In the 
subplots’ titles, A stands for amplitude and D for duration. The limits of the vertical axes correspond to the bounds of the values of each parameter 
during fitting. The middle value is considered to be the transition point from the normal to the pathological range. In all but the two D1 subplots, the 
lowest value is the normal one, while the highest is the extreme pathological. Seven points are drawn in each subplot, each one giving the best fitted 
value of the presented parameter for the corresponding LFP.  
 



  

VI. CONCLUSIONS AND FURTHER WORK 
The importance of this work lies at the direct linking of 

neurophysiological data from a relatively high level of 
description, such as the LFPs, with a biophysically 
plausible model that can reveal indications about the 
pathophysiology of the basal ganglia. So far, from what is 
presented in this work, we can conclude the following: 

• The utilized population level model of the basal 
ganglia is able to reproduce the characteristic beta band 
peak. 
• The reproduction can be achieved for various 
frequency points in the beta range, suggesting that the 
model can be used for personalized approaches. 
• The beta band peak can only be expressed if the 
critical parameters are allowed to take values within the 
assumed pathological range. That is determined by 
modifying the normal values of amplitudes and 
durations of the PSPs, according to the hypothesized 
effect of dopamine depletion.  
• The modification of the synaptic parameters is 
therefore crucial for the model to function in a 
parkinsonian-like behavior. This indication 
physiologically suggests a pivotal role of synaptic 
strength in Parkinson’s disease. 
Technically, further elaboration is necessary in order to 

finalize the obtained results, by driving the fitting 
procedures to their best potential. That was not the 
primary goal of this work, since the investigation of the 
approaches presented here demanded the exploration of 
several possible tools and algorithms. Concluding about 
the methods used, we can note the emergence of some 
best guidelines: 

• Both RMSE and PCC error estimation methods are 
efficient, but PCC is preferable. 
• Genetic algorithms are on average the most efficient 
optimization method, but direct-search algorithm 
provides most of the best fit results. 
• The combination of genetic algorithms and direct 
search bears the best potential for leading to the best 
possible fits. 
Further work will be consisted of loosening 

computational budget’s requirements and narrowing the 
selection of algorithms. That will enable the finding of the 
best possible fit to each LFP signal, making more reliable 
the final best fitted values of the parameters and the 
analysis of their specific contributions to the position of 
the beta peak in frequency. Another way that remains to 
be explored is the fitting in the time domain, which may 
extend and complete current approaches’ conclusions.   
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