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Abstract—The fractal dimension (FD) is a natural 
measure of the irregularity of a curve. In this study the 
performances of two FD-based methodologies are compared 
in terms of their ability to detect the onset of epileptic 
seizures in scalp EEG. The FD algorithms used is Katz’s, 
which has been broadly utilized in the EEG analysis 
literature, and the k-nearest neighbor (k-NN), which is 
applied in this study in a time series sense for the first time. 
244.9 hours of EEG recordings, including 16 seizures in 3 
patients, were analyzed. Both approaches achieved 100% 
sensitivity with a false positive rate of 0.85 FP/h for the k-
NN algorithm and 1 FP/h for Katz’s algorithm. The 
corresponding detection delays were 6.5 s and 10.5 s on the 
average, respectively. The k-NN algorithm seems to 
outperform Katz’s algorithm. Results are satisfactory in 
comparison to other methodologies applied on scalp EEG 
and proposed in the literature.  

I. INTRODUCTION 
LTHOUGH computer detection of epileptic 

seizures is a relatively old field of research, dating in 
the early 70’s [1], it is still important in the management 
of epileptic disorders. One issue is that long-term 
monitoring during pre-surgical evaluation for epilepsy 
surgery produces huge amounts of 
electroencephalographic (EEG) recordings which need to 
be reviewed. For that reason, various automated seizure 
detection techniques have been developed which aim to 
detect the presence of a seizure [2]-[7]. A more 
challenging issue is to develop algorithms for the 
detection of the onset of epileptic seizures (early 
detection), with as few false detections as possible. In a 
hospital setting, this would facilitate prompt medical staff 
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intervention during seizure activity. Moreover, in an 
ambulatory setting, seizure onset detection could enable 
closed-loop stimulation protocols for seizure termination 
[8]. In both cases, minimization of the false positive (FP) 
rate (rate of false detections) is important.   

Various approaches have been proposed in the 
literature towards early detection of seizures [9]-[14], 
most of which have been applied to intracranial EEG 
recordings [10]-[14], even though routine long-term 
monitoring as well as ambulatory monitoring usually 
involve non-invasive scalp EEG [15]. On the other hand, 
scalp EEG, in comparison to intracranial recordings, is 
subject to signal attenuation, poor spatial resolution and 
more noise and artifacts, which make the detection of 
seizures a more challenging task.   

In this study we utilize and compare fractal dimension 
(FD) estimation algorithms in order to automatically 
detect the onset of epileptic seizures from long-term scalp 
EEG recordings acquired during pre-surgical evaluation 
of patients with refractory mesial temporal lobe epilepsy 
(MTLE). The term “fractal” can be used to characterize 
objects in space or fluctuations in time which show a 
form of self-similarity. The FD is a measure of how 
complicated a self-similar object is, and in time series 
analysis it can be used to quantify the irregularity or 
complexity of a waveform [16].  

The FD of EEG has been widely used in the EEG 
literature [17]- [19], and several FD estimation 
algorithms have been utilized. Some of the most widely 
used ones are those proposed by Katz [20], Higuchi [21], 
and Maragos and Sun [22]. Moreover, different studies 
have utilized FD methods for the detection of epileptic 
seizures [5], [13]. Nevertheless, to the best of our 
knowledge, no extensive study has been published to-
date on a FD estimation algorithm applied on multi-day 
scalp or intracranial EEG. A seizure detection algorithm, 
which uses a line length measure inspired by Katz’s 
algorithm, has been presented and evaluated on long-term 
intracranial EEG data [14].  

In this work we compare two FD estimators, with the 
ultimate goal of real-time epileptic seizure onset 
detection in long-term continuous scalp EEG. We 
propose the use of the k-Nearest Neighbor (k-NN) FD 
estimation algorithm [23] and we compare its 
performance to that of Katz’s algorithm [20]. To the best 
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of our knowledge, this is the first time that the k-NN 
algorithm is applied in a time series analysis sense, 
whereas it has been used for image analysis [23]. 
Moreover, this is the first time that FD methods are 
evaluated on complete long-term EEG records (including 
all possible artifacts). 

II. MATERIALS AND METHODS 

A. Data Description 
In this study continuous long-term scalp EEG data 

from 3 patients with refractory MTLE, containing 16 
seizures, were analyzed. All the data were collected in the 
Epilepsy Telemetry Unit, Department of Neurosurgery, 
University of Athens, “Evangelismos” Hospital, during 
long-term video/EEG for pre-surgical evaluation, using a 
Beehive Millennium Digital Recording System with 
Grass Telefactor TWin Recording and Analysis Software. 
Twenty five gold disk electrodes were placed according 
to the 10-20 system in addition to 6 temporal electrodes 
(2 of them sphenoidal). After filtering between 0.1 and 70 
Hz, data were sampled at 400Hz with 12 bits A/D 
resolution. A referential electrode montage was used for 
the analysis, the reference electrode being placed 
between Cz and Pz. For each patient a standard set of 5 
EEG traces was analyzed depending on the lateralization 
of the seizure origin (T1, T3, T5, F7, 27 for left temporal 
epilepsy, and T2, T4, T6, F8, 28 for right temporal 
epilepsy). T1,T2 were placed 3cm below F7, F8, 
respectively, and 27,28 were placed at mastoidal hilus. 
Seizure onset times were marked by two independent 
specialists as the points in time that the first EEG changes 
occurred which led to a clear seizure discharge.  

B. Fractal Dimension Estimation Algorithms 

Katz’s Algorithm 
Waveforms are collections of points  = (xi, yi) 

with    xi < xi+1 , i=1, 2, …, N (N: number of points), and 
are special cases of planar curves. In general, the FD, D, 
of a planar curve is given by 

ipr

[20]:  

( ) ( )log logL dD =                            (1) 

where  is the total length of the curve and its 
diameter. For waveforms the total length is the sum of 
the distances between successive points 
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where .  is the Euclidean distance. The diameter 

(planar extent) d can be considered to be the farthest 
distance between the starting point and any other point of 
the waveform: 

1max ii
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According to [20] (1) needs to be corrected by making 

use of the average step a  of the waveform, which is the 
average distance between successive points. Using a , (1) 
becomes: 

log( / )
log( / )

L aD
d a

= .                                 (2) 

Defining  as the number of steps in the curve (one less 
than the number of points N), then 

n
n L a= . Substituting 

n in (2), FD according to Katz’s approach [20] is 
expressed as: 
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k-th Nearest Neighbor Algorithm 
The k-NN algorithm belongs to a class of algorithms 

called fixed-mass methods, according to which FD 
estimation is based on the sizes of cubes which are scaled 
appropriately as to contain the same number of points 
(fixed mass) [23] (and references therein). The average 
distance, kr< > , of a point from its k-th nearest 
neighbour can be expressed as a function of k as [24]: 

( )( ) / ( ), / D
kr G k k N γ γγ γ< > =                        (4) 

where γ=(1-q)Dq, D(γ)=Dq, Dq is the multifractal 
dimension of order q, N is the number of points, and 
G(k,γ) is a function of k and γ, which is near unity for 
large k. For q=0, the fractal dimension is obtained, that is 
FD=D0 [23], which means that FD is the fixed point of 
the function ( )D γ , namely FD=D(FD). 

The fractal dimension of a waveform is estimated 
iteratively, using (4), for k=kmin, …, kmax (k integer), as 
follows [23]: 

Step 1: An initial value of γ, i.e. γ0, is chosen arbitrarily 
and G(k,γ) is set to unity for every k. Since the fractal 
dimension of one-dimensional (1D) signals lies 
theoretically between 1 and 2, it would be better to 
choose 0γ  in this range, i.e. γ0 =1.5. 

Step 2: For every point  = (xi, yi), i=1, 2, …, N,  we 

calculate the Euclidian distances  from its k nearest 

neighbors, k=kmin, …, kmax.. 

ipr

ikr

Step 3: For j=1, 2, … the following recursive relations 
are applied: 
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where sj-1 is the slope of the best-fitting line at the points 
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The calculation of (5) is repeated until the quantity 
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 drops below a certain value (e.g. 10-5) or 

a maximum number of iterations is reached (4 in our 
case). FD is calculated as D(γj) for the last j.  
C. Selection of parameters for FD estimation algorithms 

In order to apply the FD estimation algorithms to EEG 
data, the values of some important parameters must be 
selected. Those are the length of the sliding window we 
will use in our analysis (EEG traces will be divided in 
windows during which FDs will be estimated) and the 
values of (kmin,kmax) combination to be used for the k-NN 
FD estimation. Katz’s algorithm is free of parameters. 
Towards this direction, the two algorithms were assessed 
on synthetic data of known FD (Weierstrass cosine 
functions [25]) in terms of accuracy and record length N. 
Moreover, it was examined how the FD estimates using 
the k-NN algorithm change with (kmin,kmax) in order to 
select a (kmin,kmax) combination which gives a minimum 
error between the theoretical and estimated FDs for each 
particular N examined.  

It was found that for N≥800 the performance of both 
the Katz and the k-NN algorithm is satisfactory for the 
whole range of FD values examined (1.1, 1.2, …, 1.9), 
with the     k-NN algorithm being generally more 
accurate for all different signal lengths (N) examined. 
Therefore, for the sliding window analysis in EEG data 
we chose N=800, regarding this value as a good 
compromise between promoting stationarity in each 
segment analyzed and having enough data points to 
ensure reliable estimation of FDs. Moreover, this window 
length (corresponding to 2sec) is short enough to allow 
quick detection of seizure onset. 

We found that for N=800 the combination 
(kmin,kmax)=(2,130) provided the least error between the 
theoretical and estimated FDs. Therefore, we used this 
value for our EEG analysis. 

D. Description of seizure onset detection procedure 
Analysis of EEG was performed on the full recording 

of each patient (including night sleep). No pre-selection 
of data was undertaken in order to exclude artifacts such 
as those introduced by electromyographic (EMG) activity 
during chewing, movement of the patient or electrode 
failure. A FP was defined as any non-seizure event that 
was detected by the system. Duration of recordings in 
hours is shown in Table I.  

The first step of our approach included band pass 
filtering of the data between 3-30Hz. The reason for this 
was three-fold: a) seizure activity lies more often 
between 3 and 29Hz [2] b) occurrences of 0-3 Hz activity 
can be frequent in non-ictal sleep EEG and c) this 
filtering removed high amplitude slow post-ictal EEG 
activity which in our analysis proved to be the cause of a 
great number of FP (which were eliminated after 
filtering). A zero-phase Butterworth filter of order 4 was 
used. After filtering, a sliding window approach was used 

for further analysis: 2s-length windows (corresponding to 
800 points) with no overlap were used, as explained 
before. As a second step of our approach, the variance of 
each  data window was computed and the EEG values of 
each data window were divided by the corresponding 
variance value. The motivation behind this action will be 
explained later in this section.  

After following the aforementioned procedure, new 
time series were produced, points of which corresponded 
to FD estimations for each data window. From the 
resulting time series it became clear (see Fig. 1) that FD 
dropped during seizures in most cases. A threshold was 
applied to determine the detection status of each window: 
if the FD value of a given window was below the 
threshold value, then that window was candidate of being 
the start of a seizure. Towards this direction, a parameter 
w was defined as the number of FD values (number of 
windows) that should have remained under the threshold 
in order for the last window to be characterized as 
“detection” (the procedure for threshold selection is 
explained later in this section). This was done in order to 
avoid producing detections due to short bursts of activity 
or short artifacts. In the present study we used w =2. 
Detections separated by less than 40 sec were grouped 
and counted as a single detection (similar approach to 
[9]). A detection delay was defined as the time elapsed 
between the beginning of a seizure as defined by the EEG 
specialists and the end of the first window detected in the 
sense described above.  

Since the pattern we wanted to detect was a drop in the 
FD time series that could be indicative of a seizure, it 
would be desirable to find ways to make the seizure and 
the non-seizure EEG states more distinguishable in terms 
of FDs. The action of dividing the EEG values of each 
window with their variance was towards that end. The 
variance of the EEG of a window usually gets larger 
when a seizure occurs (as found in this work and 
mentioned in [6]). Dividing the EEG values of a window 
with their variance resulted in lowering the EEG values 
during seizure windows in comparison to non-seizure 
ones. Due to the amplitude dependence of FD estimation 
algorithms in this work (e.g., see [26]), this meant 
estimation of comparatively lower FDs during seizures. 
This led to fewer FPs and smaller detection delays.   

One important issue was the selection of the threshold. 
In this work we adopted a user tunability operation 
similar to the one proposed in [9], which allows the user 
to make the choice of sacrificing seizure detections (or 
having bigger delays) by changing the threshold value in 
order to reduce high FP rates. Thus we defined a range of 
threshold values for the user to choose from as follows: 
after producing the FD time series from our EEG data, 
we tried different threshold values for both Katz and k-
NN algorithms. For each method we found a range of 
threshold values which included, for all the patients, an 
optimum threshold. The optimum threshold was defined 



  

as the lowest threshold for which 100% sensitivity with 
as small detection delays as possible was achieved, and 
which at the same time produced the lowest number of 
FPs. In most cases, FP rates for this optimum threshold 
were comparable to the ones reported in the literature, i.e. 
less than 1FP/h. We did not allow FP rates greater than 
1.5 FP/h ([7] reports 1.35 FP/h). The range of threshold 
values defined in this work is 1.11-1.16 for Katz-based 
results and 1.21-1.26 for k-NN-based results, with step 
0.1 (we selected 6 threshold values for both algorithms). 
As default threshold value one could use 1.11 for Katz 
and 1.21 for k-NN algorithms. 

III. RESULTS 
The results for optimum threshold values for each 

method are shown in Table I. For patients 1 and 3 both 
algorithms achieved less than 1FP/h. For patient 2 this 
was not the case, as for this patient the recording was 
quite long and the quality of the recording started 
deteriorating significantly during the fourth day: the FP 
rate was 0.56 FP/h for the first 90 hours of the recording 
and 2.47 FP/h for the rest 74 hours using the k-NN 
algorithm and 0.61 FP/h and 2.39 FP/h using Katz’s 
algorithm (for the threshold values of Table I).  

All results presented in Table I correspond to the best 
channel out of the 5 analyzed in the sense of having the 
minimum detection delays in combination with the 
minimum number of FPs. These channels are T5, T2, and 
28 for patients 1, 2, and 3, respectively.  

Fig. 1 shows FD time series produced from patients 1 
and 2. We notice there is a clear drop of FD values during 
each seizure, while the FD values return to their pre-ictal 
level immediately after the end of the seizure in most 
cases. Reference electrode failure and EMG activity 
caused by chewing were the main cause of false positives 
in our system.  

An example of false detections is shown in Fig. 1, for 
seizure 4, patient 2. In this case there exist two additional 
vertical dashed lines after the end of the seizure, in both 
Katz and k-NN methods. These correspond to FPs 
produced by our method due to poor EEG quality 
(reference electrode failure). Fig. 2 shows the part of 
EEG corresponding to the first false detection mentioned 
above. This FP was produced by the four seconds of EEG 
which start from the bold vertical line (two 2 s windows).  

 

TABLE I 
COMPARATIVE RESULTS OF KATZ AND K-NN ALGORITHMS WITH OPTIMUM THRESHOLD VALUES 

    k-NN Algorithm  Katz Algorithm 

Patient 
Number 

of 
Seizures 

Duration of 
Recording 

(h) 
 Optimum 

Threshold 

True 
Positives 

(%) 
FP/h 

Mean 
Detection 
Delay (s) 

 Optimum 
Threshold 

True 
Positives 

(%) 
FP/h 

Mean 
Detection 
Delay (s) 

1 4 13  1.26 100 0.23 6.5  1.15 100 0.61 10.5 
6.6 2 5 164  1.21 100 1.42 5.8  1.12 100 1.41 

3 7 67.9  1.22 100 0.91 18.4  1.13 100 0.99 27.8 

     mean mean median   mean mean median 
Total 16 244.9   100 0.85 6.5   100 1.00 10.5 

Fig. 2.  False detection from patient 2 caused by reference electrode 
failure. Solid vertical line indicates the start of the 4 sec interval which 
caused the false detection. Light vertical lines indicate 1 s intervals. 

Table II shows the detection delays for all seizures of 
all patients. It is worth mentioning that of all seizure 
detections, 93.75% using the k-NN method and 81.25% 
using Katz’s method were achieved within the first one 
third of the corresponding seizure duration.  

IV. DISCUSSION 
Our approach is designed with ultimate goal to be 

appropriate for on-line EEG analysis (real-time 
prospective analysis). It is general as it does not require 
any prior information about the signal analyzed and it 
does not depend on pattern recognition as other works in 
the seizure detection literature do [7]. 

Comparison of results (Table I and Table II) for the 
two applied methods shows that the proposed k-NN 
algorithm seems to perform better than Katz’s; it 
achieves a shorter median detection delay (6.5s) in 
comparison to Katz’s (10.5s), while at the same time it 
produces less FPs (0.85FP/h) in comparison to Katz’s 
(1.00FP/h).   

TABLE II 
COMPARATIVE RESULTS OF KATZ AND K-NN ALGORITHMS WITH OPTIMUM 

THRESHOLD VALUES: DELAYS (S) OF DETECTIONS FOR EACH SEIZURE 
Patient  Seizure number median 

  1 2 3 4 5 6 7  
  k-NN Algorithm  

1  7 5 7 7    7 
2  8 5 7 4 5   5 
3  12 11 59 7 7 27 6 11 
  Katz's Algorithm  

1  23 5 7 7    7 
2  8 5 9 6 5   6 
3  12 11 57 39 43 27 6 27 
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Fig. 1.  FD estimations using Katz and k-NN algorithms. Time t=0 corresponds to the seizure onset time while 5 minutes before and after the 
seizure onset are shown. Vertical solid lines indicate the beginning and the end of a seizure. Vertical dashed lines indicate times of detections. 
Horizontal lines indicate the optimum threshold values for each patient. Detections separated by less than 40 sec are grouped and counted as a 

single detection. (a) Patient 1, all seizures (b) Patient 2, seizures 2-5 

(b) 

Maybe this difference exists due to the better estimation 
accuracy of the k-NN algorithm which we found during 
the analysis of synthetic data. Analysis of more EEG 
records is required in order to further test the superiority 
of the k-NN algorithm.  

As mentioned in the introduction, although there exists 
enough literature on seizure onset detection, most of the 
work has been done using intracranial recordings. Due to 

the very different nature of scalp and intracranial EEG, 
we can only compare the results of the present study to 
those of studies based on scalp EEG [7], [9]. The system 
of Saab and Gotman [9] aims to detect the onset of 
epileptic seizures in scalp EEG, based on wavelet 
decomposition and Bayesian probabilities. Using the 
tuning mechanism mentioned before, they reported 76% 
sensitivity, a FP rate of 0.34FP/h and a median detection 



  

delay of 10 s (ideal threshold results) after analysis of 360 
h of scalp EEG, which included 69 seizures in 16 patients. 
In our study we achieved a perfect sensitivity and similar 
or better delays to [9], but our results cannot be directly 
compared to theirs due to the fact that we only used 
seizures from MTLE patients.  

The FP rates reported in [9] are achieved only after the 
alpha EEG rhythm, EMG and electrode failure artifacts 
are (automatically) taken account of. On the other hand, 
the false positive rates reported in our study are “raw” 
results, in the sense that no artifact removal procedures 
were performed. Therefore, again, our results cannot be 
directly compared to [9]. We expect a great reduction of 
false positives by applying automatic artifact reduction 
methods particularly aimed at the removal of reference 
electrode failure and EMG activity caused by chewing 
artifacts. We noticed that those two types of artifacts were 
the main cause of false positives in our system. Important 
is the fact that, comparatively, we did not have large 
number of FPs originating from patterns such as alpha 
EEG activity, rapid eye blinking or short bursts of 
rhythmic EEG activity, in contrast to [9].  

On the other hand, Gabor in [7] reported 92.8% 
sensitivity and 1.35±1.35 FP/h using 4553.8 h of scalp 
EEG, which included 181 seizures from 65 patients; 
detection delays were not reported, as this study 
emphasized seizure identification and not seizure onset 
detection. Our method, tested on a limited number of 
patients, seems to outperform both their sensitivity 
(overall) and their FP rate for 2 out of 3 patients analyzed. 
In future work, application of our method to EEG data 
from more patients is needed in order for comparisons 
with other methods to become more appropriate. 
Moreover, more epilepsy types (having different seizure 
characteristics) should be included in the analysis. 
Finally, in the future we could use clear separation of 
testing and training data for threshold selection.  
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