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Abstract— Sleep spindles are groups of rhythmic activity, 
with a waxing-waning morphology, and are considered a 
hallmark of stage 2 of the sleep electroencephalogram (EEG). 
They are   present predominantly in stages 2, 3 and 4 of the 
sleep EEG. Spatial analysis of sleep spindle scalp EEG and EEG 
inverse problem solutions have provided evidence for the 
existence of two distinct sleep spindle types, “slow” and “fast” 
spindles at approximately 12 and 14 Hz, respectively. The 
present study aimed at processing sleep spindles with 
Independent Component Analysis (ICA) in order to investigate 
the possibility of extracting spindle “components” 
corresponding to separate EEG activity patterns. The EEG 
activity underlying the components was also investigated, using 
the Low-Resolution Brain Electromagnetic Tomography 
(LORETA) technique, inverting the 21-channel EEG recordings 
to cortical current sources. Results indicate separability and 
stability of current sources related to sleep spindle 
“components” reconstructed from separate groups of 
Independent Components (ICs). 

I. INTRODUCTION 
A sleep spindle may be defined as a group of rhythmic 
electroencephalographic (EEG) waves characterized by 
progressively increasing, then gradually decreasing 
amplitude, which is mostly below 50 μV peak-to-peak in an 
adult. The waves have an individual frequency at 
approximately 12 to 14 Hz, although it may extend from 11 
to 16 Hz. They are grouped in sequences lasting up to 2-3 
seconds and the sequences may recur every 3 to 10 s [1, 2]. 
Sleep spindles are used in the classification of sleep stages, 
because they constitute one of the hallmarks of stage 2 of 
non-rapid eye movement (non-REM) sleep [3]. The 
functional significance of sleep spindles has not yet been 
fully elucidated [4]. 

Sleep spindles seem to exhibit a bimodal distribution as 
far as their EEG frequency and spatial distribution is 
concerned: slow spindles, with about 12 Hz frequency, 
which are more pronounced in the frontal region of the head, 
and fast spindles, with about 14 Hz frequency, which are 
more prominent in the central and parietal region [2,5-7]. 

There exists an on-going debate concerning whether the 
topographic and spectral bimodality is due to the existence 
of at least two functionally separated spindle generators [8-
10]. 
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Blind Source or Signal Separation (BSS) is a commonly 
encountered problem in science and engineering. The 
problem relates to revealing unknown signals, called 
sources,  from their linear mixtures, which are usually 
known quantities, with very limited, if any, prior knowledge 
about the  mixing mechanism. It is assumed that at time 
instant k the observed n-dimensional data vector, x(k) = 
[x1(k), … , xn(k)]T  is given by the model: 
xi(k) = ai1s1(k) + ai2s2(k) + … , aimsm(k)  
or, in an equivalent matrix notation, 
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The source signals, s1(k), … , sm(k), are supposed to be 
stationary independent but unknown, as are the coefficients 
of the mixing matrix A = [a1, … , am ]. Furthermore, only 
one source may be Gaussian. Both unknowns have to be 
estimated from a sample of x(k). The solution is in the form 

)(Wxŝ k(k) = , (2) 
where W is called the “separating” matrix. Independent 
Component Analysis (ICA) is a statistical technique used for 
solving the BSS problem by finding linear projections of the 
data that maximize their mutual independence [11]. ICA has 
been used widely in biomedical signal processing, more 
prominently for noise extraction, as well as for ERP 
component extraction in electroencephalography [12-14]. 
ICA has also been used for detecting sleep spindles [15]. 

ICA by itself does not provide the intracranial electric 
sources which are responsible for generating the scalp-
recorded EEG. At most, it can be used to recompose the 
scalp-recorded EEG, by selecting some of the independent 
components (ICs) to be used in the recomposition process. 
For computing the unknown electrical sources, a variety of 
techniques have been developed during the last decades 
[16]. Low-resolution brain electromagnetic tomography 
(LORETA) is one of the most widely used techniques. The 
main assumption imposed for solving the inverse problem is 
that the solution sought is the smoothest of all possible 
inverse solutions [17].  

The present work aimed at studying the possibility of  
extracting spindle “components”, by applying ICA to sleep 



 
 

 

 
Fig. 1. Original filtered sleep spindle EEG (left) and ICs (right). Potentials of EEG recordings are in microvolts. The exact IC values do not possess 
an interest, due to the sign and multiplicative constant indeterminacy of the results of ICA. The absolute maximum value of all ICs dictated a 
common magnitude range for the representation of the ICs. The order of the numbering of the ICs is not related to the ordering of the EEG channels. 
 

 

 
Fig. 2. ICA-reconstructed EEG corresponding to the spindle component which is dominant in the first part of the spindle. Potentials of EEG recordings 
are in microvolts. 
 

spindle EEG. These components, present in the ICA-
reconstructed EEG, corresponded to distinct EEG activity 
patterns. Furthermore, the presumed electrical sources of the 
spindle components were computed through the LORETA 
technique, in order to provide indications about the 
existence of distinct sources for the two spindle types. This 
study employs 21-electrode-recorded EEG, in 
contradistinction to a previous study which was based on 8-
channel EEG [18]. 

II. MATERIALS AND METHODS 
A single subject’s all-night polysmonographic recording, 

obtained at the Sleep Research Unit of the University of 
Athens Department of Psychiatry, was examined. The EEG 
was recorded at 21 electrodes (referential montage, 
reference at G2), at positions F8, T4, T6, Fp2, F4, C4, P4, 
O2, Fpz, Fz, Cz, Pz, Oz, Fp1, F3, C3, P3, O1, F7, T3, T5, 
with a sampling frequency of 256 Hz. Sleep spindles were 
visually detected and filtered using a 128th-order finite 
impulse response (FIR) band-pass filter, with cut-off 
frequencies at 10,5 and 16 Hz.  



 
 

 

 
Fig. 3. ICA-reconstructed EEG corresponding to the spindle component which is dominant in the second part of the spindle. Potentials of EEG 
recordings are in microvolts. 
 
ICA was applied on the original filtered EEG data, using 

the FastICA algorithm [19, 20] (Fig.1). In contradistinction 
to ICA applied to 8-channel EEG data [18], the ICs which 
were produced when a 21x21 mixing matrix was computed 
were composed of short-duration (less than 4 cycles) 
wavelets, with no apparent spindle-like activity and/or 
correspondence to the EEG spindle activity. In order to 
overcome this problem, Principal Component Analysis 
(PCA) was applied to the filtered EEG data and nred ICs  
were computed. nred was selected as the number of PCs 
needed so that the variance explained by the PCs exceeded 
99% of the total variance of the EEG signal. Therefore, a 
21xnred mixing matrix was computed instead of a 21x21 
matrix. Extensive trials showed that the ICs which were 
computed through this dimension-reduction technique 
retained a much more spindle-like morphology, as was the 
case for ICA applied to 8-channel EEG data [18]. Then, 
Short-Time Fourier Transform (STFT) was applied to the 
EEG and the ICs, so that the temporal evolution of the main 
frequency of the signals might be inspected. Next, the 
original single spindle timeframe was divided into parts that 
reflected different spindle-like activities, within that spindle. 
The division was based on the existence of distinct waning-
waxing cycles and/or on transitions from “low” (≤12 Hz) to 
“high” (≥13 Hz) frequencies (or vice versa). ICs were 
inspected, in order to detect those ICs who possessed 
spindle-like morphology and would best correspond to the 
previously selected parts of the spindle EEG, both 
concerning their time duration and their frequency content. 
Suppose that the EEG was divided into two parts, A and B.  
Then some ICs would be grouped together and be 
considered as “representative” (“main” ICs) for part A, and 
some other ICs for part B. After ICs had been selected as 

representative of the parts, the EEG was reconstructed, for 
the whole time duration of the spindle, once based only on 
the ICs of group A, and once based only on the ICs of group 
B. The expected aim of the above procedure was the 
extraction of spindle components corresponding to separate 
EEG activity patterns in the EEG. Each spindle component 
was expected to provide predominantly the spindle-like 
morphology in the part where its generating ICs were 
considered as “representative”. 

Next the cortical electrical sources of the spindle 
components were computed, using the publicly available 
software version of  LORETA [21]. Distributions of current 
density were computed, for each time sample, for both the 
original EEGs and the reconstructed ones. In order to reduce 
the amount of information available for processing, the data 
from each source point were averaged for the whole 
duration of the respective spindle part. Therefore, for each 
spindle part, three mean source activity images were 
produced, one for the sources of the original EEG in that 
part, and one for the sources of each EEG reconstruction. 
The mean value images were compared, concerning the 
anatomical location of the strongest spatial local maxima of 
the current density distribution. 

III. RESULTS 
A representative case is shown in Fig. 1. On the left part 

of the figure, a multi-channel original sleep spindle EEG is 
shown. The spindle started as a high-frequency one, with 
main frequency at 13 Hz, and then, at all electrodes except 
electrode F3, a transition to low frequency (12Hz) took 
place, which ranged from approximately 1.1 sec at F4 to 1.7 
sec at electrodes T6, P4, O2, Pz, Oz, P3, O1, T5. In 
electrodes F8, T4, C4, P4, Pz a clear waxing-waning 



 
 

 

 

 
Fig. 4. Distributions of mean source activity for part A. Sources of the original EEG are given at left, of the ICA-reconstructed EEG representing 
the dominant component in this part at center and of the ICA-reconstructed EEG representing the other (non-dominant) component, at right. Each 
distribution is displayed relative to its own maximum. 

spindle-like morphology was discernible starting at 
approximately 0.25 sec and finishing at 1.4-1.6 sec, 
therefore indicating the possible presence of an initial high-
frequency component. The emergence of the 12 Hz as main 
frequency followed the 13 Hz main frequency, but a distinct 
waxing-waning spindle-like morphology, following the 13 
Hz waxing-waning spindle-like morphology, was apparent 
as a second, lower energy activity, only at electrodes C4, Pz, 
P3 and T3, although the amplitude reduction that indicated 
the passage from the waning of the 13 Hz spindle to the 
waxing of the 12 Hz frequency was slight. Only at electrode 
F7, a dominant 12 Hz waxing-waning cycle emerged 
following lower amplitude 13-14 Hz activity. The above 
morphological and spectral characteristics of the EEG 
recordings provide indications that there existed the 
possibility of division of the original spindle in two parts, 
the first one (A) containing a high frequency spindle 
component and the second one (B) a low frequency one. 

By applying PCA to the EEG data, 99% of the variance 
present in the data was explained by the 7 first principal 
components. In Fig. 1 (right) the 7 ICs are presented which 
were computed using the 7x21 separating matrix. In order to 
find ICs representative of part A, ICs were selected which 
had a spindle-like 13 Hz activity at part A and no spindle-
like activity at part B. Inversely, in order to find ICs 

representative of part B, ICs were selected which had a 
spindle-like 12 Hz activity at part B and no spindle-like 
activity at part A. The application of the above criteria led to 
the selection of ICs 2 and 6 as representative of part A and 
IC 5 as representative of part B. Taking into consideration 
the morphologies of both the EEG channels and the selected 
ICs, an approximation of the time indicating the transition 
between the two parts was set at 1.5 sec. Fig. 2 shows the 
reconstructed EEG, based on the ICs representing the first  
spindle component.  Fig. 3 shows the reconstructed EEG, 
based on the ICs representing the second spindle component 

Fig. 4 shows, at left, the mean source activity 
corresponding to the original data in part A, at center the 
mean source activity corresponding to the reconstruction of 
the EEG based on ICs 2 and 6, and at right the mean source 
activity corresponding to the reconstruction of the EEG 
based on IC 5. The distribution shown at left had maxima at 
the cuneus (occipital lobe) and at temporal lobes, bilaterally. 
As mentioned above, the EEG frequency was high. 
Therefore, it was expected that this activity should appear as 
activation mainly at posterior parts. It should be noted that 
the term “posterior”, in the context of the present work, is 
used mainly in contradistinction to frontal lobes, including 
not only sources in the occipital lobes but also in the limbic, 
parietal and temporal lobes. The source distribution 

 

 
Fig. 5. Distributions of mean source activity for part B. Sources of the original EEG are given at left, of the ICA-reconstructed EEG representing 
the non-dominant spindle component at center, and of the ICA-reconstructed EEG representing the dominant component, at this part, at right. 
Each distribution is displayed relative to its own maximum.



 
 

 

presented also a local maximum at frontal sites, albeit with 
20% less amplitude than the occipital global maximum. This 
activity corresponded to sources responsible for the low 
frequency spindle-like activity that would predominate in 
part B, but which were also present in part A. The sources 
corresponding to the EEG reconstruction, based on the main 
ICs of the spindle for part Α (Fig. 4, center), showed also 
predominant activation at parietal and temporal sites, which 
is consistent with the high frequency dominant component 
of part A. The sources corresponding to the EEG 
reconstruction based on IC 5 (Fig. 4, right) presented a peak 
of activation at frontal areas, which is consistent with the 
low frequency of the spindle-like activity that existed in the 
reconstructed EEG at part A (see Fig. 3). This source 
activity corresponded to the frontal activity seen in the 
source distributions of the original EEG for part A (see Fig. 
4, left). 

Fig. 5 shows the average source activity corresponding to 
part B. The source activity corresponding to the recorded 
original EEG (Fig. 5, left) had clearly shifted to anterior 
areas, as expected, since the dominant frequency at this part 
was low (12 Hz). It is remarkable that the local maxima of 
the current sources were nearly the same as the local 
maxima of current activity that represented the sources of 
the EEG that was reconstructed by IC 5 (Fig. 5, right), i.e. 
the main IC for part B. Furthermore, those local maxima 
were exactly the same as those which were computed for the 
sources of the EEG reconstruction based on IC 5 for part A 
(Fig. 4, right). Finally, the sources corresponding to the  
EEG reconstructed through ICs 2 and 6 were mainly in  
posterior areas, as expected, since the frequency of the low-
amplitude spindle-like activity of the EEG reconstructed by 
those ICs, in part B, is of high frequency (13 Hz). There was 
again remarkable stability of the local maxima of source 
locations, shown in Fig. 5 (center), when compared to the 
local maxima of the sources corresponding to the EEG that 
was reconstructed by ICs 2 and 6 for part A, shown in Fig. 4 
(center). Therefore, in the example presented, the sources 
corresponding to the reconstructed EEG for each group of 
ICs maintained their distribution from part Α to part B. This 
is in accordance with the assumption that ICs reflect 
separate “local” source activities. 

IV. DISCUSSION 
The use of ICA in processing sleep spindle EEG was 

assessed in the present study. Results provide indication that 
spindle components, which constitute a single-spindle 
recording, and which may not be easily distinguishable in 
the recording, may be separated using morphological and 
frequency spectrum criteria, when these criteria are applied 
to the original single-spindle recording and its ICs. Spindles 
were divided into consecutive time parts. At each part, one 
of the components was found to contribute predominantly to 

the spindle-like characteristics of the EEG. This was attested 
by inspecting the morphology and spectral content of the 
EEG reconstructed by the ICs representing the component.  

Concerning source analysis, indication was provided that 
the positions of the maximal sources corresponding to the 
spindle component representing the spindle activity in each 
part were the main loci of sources corresponding to the same 
part of the original EEG. This was based on the result that 
the region of maximal activation in the cortex, generating 
the original EEG in one part, coincided in large extent with 
the region of maximal activation of sources corresponding to 
the spindle component representing the spindle activity in 
that part. Furthermore, concerning the source distribution of 
fast and slow spindle types, in most spindles analysed in the 
present study, the sources of fast spindle components were 
at posterior and central regions, and those of slow spindle 
components at frontal regions, in accordance with most 
existing literature [8,10].  

The topographic pattern of source distribution 
corresponding to each component was remarkably stable 
throughout the duration of the spindle. This indicated that, 
even when the activity of the component was not clearly 
apparent, nevertheless the sources, that are responsible for 
the emergence of that component as predominant in the next 
part, are already existing as a group from the first part and 
will retain their topographic stability throughout the spindle 
EEG recording. Correspondingly, when a component was 
predominant in the first part, its corresponding sources 
would remain in large extent the same, albeit with reduced 
amplitude, in the next part. Since ICs, or groups of ICs, are 
hypothesised to reflect functionally and topographically 
separate sources, spatial stability of sources was a 
characteristic expected from ICA-extracted data [11-13].  
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