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Abstract—Quantification of Diffuse Parenchyma Lung Disease 

(DPLD) patterns challenges Computer Aided Diagnosis schemes 
in Computed Tomography (CT) lung analysis. In this study, an 
automated scheme for volumetric quantification of Interstitial 
Pneumonia (IP) patterns, a subset of DPLDs, is presented, 
utilizing a MultiDetector CT (MDCT) data set. Initially, Lung 
Field (LF) segmentation is achieved by 3D automated gray level 
thresholding combined to wavelet highlighting, followed by a 
texture based border refinement step.  The vessel tree volume is 
identified and removed from LF, resulting in Lung Parenchyma 
(LP) volume. Following, the abnormal LP is differentiated from 
normal LP utilizing a 2 class k-means clustering. Quantification 
of IP patterns is formulated as a three-class pattern recognition 
problem to classify abnormal LP into ground glass, reticular and 
honeycomb patterns, by means of SVM voxel classification, 
exploiting 3D co-occurrence features. Performance of the 
proposed scheme in segmenting LF, as well as in quantifying 
normal LP, ground glass, reticular and honeycomb patterns was 
evaluated by means of volume overlap on 5 MDCT scans. 
Volume overlap for left LF and right LF was 0.95±0.03 and 
0.96±0.02 respectively, while for normal LP, ground glass, 
reticular and honeycombing patterns was 0.89±0.02, 0.70±0.04, 
0.72±0.05 and 0.71±0.03, respectively. 
 

Index Terms— computer aided diagnosis, diffuse lung diseases 
quantification, 3D Co-occurrence, Support Vector Machine 
classification, MultiDetector CT.  
 

I. INTRODUCTION 
OMPUTED tomography (CT) has become the modality 
of choice for lung imaging. While high resolution CT 

(HRCT) scan protocols allows visualization of fine lung 
structures, only a limited portion of lung parenchyma is 
scanned (approximately 10%) [1]. Multidetector CT (MDCT) 
allows acquisition of volumentric datasets with almost  
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isotropic voxels, enabling visualization, characterization and 
quantification of the entire extent of Diffuse Parenchyma 
Lung Diseases (DPLDs), often presented with a non uniform 
distribution throughout the lung. 

Interpretation of DPLDs is characterized by high inter and 
intra-observer variability, due to lack of standardized criteria 
in assessing complex and variable morphological appearance, 
further complicated by the large amount image data to be 
reviewed [2].  

Computer-Aided Diagnosis (CAD) schemes that 
automatically detect and quantify radiologic patterns of 
DPLDs in CT images have been proposed to provide a second 
opinion to radiologists to improve follow-up management 
decisions [1], [3]-[8]. These systems generally consist of two 
stages. The first stage is the segmentation of left and right 
Lung Field (LF) region by means of grey level-based 
methods, while the second stage performs differentiation of 
lung parenchyma into normal and abnormal tissue types, 
exploiting two-dimensional (2D) texture analysis on/of HRCT 
datasets [1], [3]-[6] and recently three-dimensional (3D) 
texture analysis on/of MDCT datasets [7]-[8].  

CAD schemes proposed for DPLDs, utilizing HRCT 
protocols, are targeted to classification of Regions Of Interest 
(ROIs) into abnormality classes/types by means of 2D textural 
features such as first order statistics [7], filter based features 
[1], [4], co- occurrence matrices [7], run lengths [7] and 
fractal features [7], while classifiers such as Bayesssian [8], 
neural networks [3] and k-nearest neighbors [1] are exploited.  

CAD schemes proposed for DPLDs, utilizing MDCT 
datasets, exploit 3D texture analysis either for classification of 
Voxels of Interest (VOIs) into abnormality types [7] or for 
volumetric detection/quantification of abnormality types by 
means voxel classification [8]. Xu et al. [7] employed 3D 
texture features (first order, co-occurrence, run length and 
fractal features) and compared a Bayessian to a Support 
Vector Machine (SVM) classifier for classification of VOIs 
into 5 tissue types. Zavaletta et al. [8] employed LF 
segmentation by iterative 3D gray level thresholding [9] 
followed by bronchovascular segmentation as a preprocessing 
step. Subsequently, histogram signatures originating from a 
sliding VOI were used in combination with earth’s mover’s 
distance, for volumentric quantification of lung parenchyma 
into 5 tissue types (normal, emphysema, ground glass, 
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reticular and honey combing).  
This paper presents a method for volumetric quantification 

of Interstitial Pneumonia (IP) patterns, a subset of DPLDs, 
utilizing a MDCT dataset. Since the accuracy of LF 
segmentation algorithm influences the performance of the 
proposed CAD scheme, a 3D LF segmentation algorithm 
adapted to IP patterns affecting lung borders is employed as a 
preprocessing step. The 3D LF segmentation algorithm is 
based on gray level thresholding combined with lung border 
voxel classification refinement. Following, broncho-vascular 
structures are segmented utilizing a line enhancement filter 
and removed from LF, to obtain lung parenchyma (LP) 
volume. LP volume is subsequently differentiated into normal, 
ground glass, reticular and honeycombing patterns employing 
k-means clustering and Support Vector Machine (SVM) voxel 
classification based on 3D co-occurrence analysis.  

The method is differentiated from reported studies towards 
IP quantification by employing a more elaborate LF 
segmentation stage, adapted to IP patterns affecting lung 
borders, while a two stage classification scheme is employed 
for IP pattern quantification.  

II. MATERIALS AND METHODS 

A. Dataset 
Clinical cases were acquired from 10 patients subjected to 

MDCT imaging, diagnosed with IP secondary to connective 
tissue diseases, radiologically manifested with ground glass, 
reticular and honeycomb patterns. MDCT scans were obtained 
with a Multislice (16x) CT (LightSpeed, GE), in the 
Department of Radiology at the University Hospital of Patras, 
Greece.  Acquisition parameters of tube voltage, tube current 
and slice thickness were 140 kVp, 300 mA and 0.625 mm, 
respectively. The image matrix size was 512x512 with 
average pixel size of 1.25 mm. MDCT scans of 5 patients 
were used to extract VOIs for training the SVM classifier 
employed for IP pattern quantification, while MDCT scans of 
the remaining 5 patients were used for evaluating performance 
of the proposed method in segmenting LF as well as 
quantifying normal LP, ground glass, reticular and 
honeycomb patterns. 

 

B. Data Preprocessing 
 
Lung Field Segmentation 

As suggested by Armato and Sensakovic [10], LF 
segmentation algorithms used as preprocessing step in CAD 
of lung diseases, should be adapted to the specific 
abnormalities being quantified. In this work, a two stage 3D 
LF segmentation technique was employed, adapted to IPs 
affecting lung borders.  

The first stage consists of a previously proposed 3D 
histogram thresholding LF segmentation algorithm [11]. 
Specifically, LF highlighting is performed by application of 
automatically derived gain factors on wavelet magnitude 

subband image values of two decomposition levels (first and 
second dyadic scales). Reconstruction from the modified 
wavelet coefficients provides the lung border highlighted 
image. Segmentation of the LF volume is achieved by 
application of minimum error thresholding [12] on lung 
border highlighted images. A morphological closing operator 
was applied on the segmented lung border to deal with under-
segmentation in the mediastinum area.  

However, gray level-based algorithms are insufficient in 
correctly segmenting LF in case of IPs affecting lung borders, 
since IPs are manifested as tissue texture alterations. To 
overcome this LF under-segmentation, a texture based border 
refinement step is employed as a second stage. Specifically, an 
iterative neighborhood labeling of lung border voxels was 
performed using an SVM classifier. The SVM classifier 
assigns a label of LF or surrounding tissue (ST) to a voxel 
using as inputs local 3D texture features. Specifically, 4 first 
order statistics (Mean, Standard Deviation, Skewness and 
Kurtosis) were extracted from a 7x7x7 VOI centered at the 
voxel being labeled. Voxel labeling is initially applied on each 
border voxel of the initial LF volume, as provided by the 3D 
gray level-based algorihtm, and subsequently on its 18-
connected neighbors. The initial LF volume is updated by 
adding voxels labeled as LF and removing voxels labeled as 
ST (0). The process continues by checking every neighboring 
voxel of an already labeled one, until the left and right LF 
volumes stay un-altered. The outermost voxels of 
corresponding un-altered LF volumes provide the final left 
and right LF borders. Coordinates of already labeled voxels 
are stored to avoid double-checking of neighboring voxels 
during the LF volume updating.  

 
Vessel tree segmentation 

Accurate segmentation of vessel tree (broncho-vascular) 
structures is required to eliminate/reduce false positive errors 
in final quantification of reticular or honeycomb patterns. 
Such false positive errors arise due to vessel tree structures 
radiologic appearance which is similar to that of reticular and 
honeycomb patterns. 

In this work, a vessel tree segmentation algorithm was 
adopted, recently proposed for vessel tree segmentation in CT 
angiography images [13]. Specifically, a multiscale line 
enhancement filter, designed to enhance vessels and vessel 
bifurcation points, was applied on segmented LF volume, 
based on the analysis of eigenvalues of the Hessian matrix at 
multiple scales (σ= 1, 2, …, 12 pixels).  An expectation 
maximization segmentation algorithm was used to segment 
vessel tree volume by segmenting high response voxels at 
each level. Finally, reconstruction of segmented vessels 
components was performed.  

The segmented vessel tree volume is removed from the LF 
volume, resulting in the lung parenchyma (LP) volume. 

 

C. Interstitial pneumonia pattern quantification 
The first step in quantification of IP patterns is the 
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differentiation of normal from abnormal LP.  A 2 class k-
means segmentation algorithm was utilized for this purpose, 
based on grey level values.  

Following, all voxels corresponding to abnormal LP are 
subjected to supervised 3D texture analysis for quantification 
of ground glass, reticular and honeycombing patterns utilizing 
a SVM classification scheme. 

   
3D Co-occurrence features 

The Gray Level Co-occurrence Matrix (GLCM) [14] is a 
well established tool for characterizing the spatial distribution 
of gray levels in an image (second order statistics). An 
element at location (i, j) of the co-occurrence matrix signifies 
the joint probability density of the occurrence of gray levels i 
and j in a specified direction θ  and specified distance d from 
each other. The 3D co-occurrence matrix stores the number of 
co-occurrences of the pairs of gray levels i and j, which are 
separated by a distance d (in this study d=1 voxel) in a VOI 
[15]. This 3D method searches for another gray level in 26 
directions in multiple planes in constructing the co-occurrence 
matrix. In this work, the following thirteen 3D co-occurrence 
matrix features were calculated from each 7x7x7 VOI: angular 
second moment, contrast, correlation, variance, inverse 
different moment, sum average, sum variance, sum entropy, 
entropy, difference variance, difference entropy, information 
measure of correlation 1 and information measure of 
correlation 2.  

 
SVM classifier 

An SVM voxel classification scheme was used to quantify 
reticular, ground glass and honeycomb patterns. Vapnik [16] 
proposed the SVM to find the optimal hyperplane that 
separates the training data to achieve a minimum expected 
risk. The basic principles of SVM are the maximal margin of 
separation and the kernel trick. Considering a two-class 
pattern classification problem, the SVM first performs a non 
linear mapping (Φ) from a low-dimensional input space to a 
higher dimensional feature space via a kernel function 
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This mapping allows the SVM to achieve better class 

separation. An SVM can be trained to construct a hyperplane 
for which the margin of separation is maximized. Maximally 
separated margins parallel to the hyperplane divide the new 
feature space into class-specific sub-spaces based on labelled 
training patterns. The perpendicular distance of the hyperplane 
from the unknown pattern is used to assign a decision value. 
There are several choices for the kernel function (K).  The 
radial basis  
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 where σ is a user-defined parameter, the dth degree 
polynomial  
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and the sigmoid  
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kernel functions. The dth degree polynomial kernel is 
unbounded and can potentially lead to numerical instability, 
while the sigmoid kernel has two parameters (k1, k2) to be 
tuned [17]. In this work, the radial basis kernel [18] function 
was utilized. The parameter C, which controls the tradeoff 
between margin maximization and error minimization, and σ 
were automatically derived according to radius-margin bound 
[19]. 
To classify abnormal LP voxels into ground glass, reticular 
and honeycomb patterns, a 3-class pattern recognition 
problem has to be solved. The SVM classifier is a binary 
classifier, so a strategy, which is called one-against-all 
classifiers, is applied to build 3-class classifiers utilizing 
binary classifiers. In this approach, a set of binary classifiers is 
trained to be able to separate each class from all others. Then 
each data object is classified to the class for which the largest 
decision value was determined. 

 
Training Set 

The training set of the classifier consisted of 256 cubic 
VOIs, defined by an expert radiologist, originating from 5 
MDCT scans of the dataset. 56 VOIs were selected to 
represent honeycombing, 100 VOIs were selected to represent 
Reticular and 100 VOIs were selected to represent ground 
glass opacities.  

D. Performance evaluation 
Performance of the proposed method in segmenting LF as 

well as in quantifying normal LP, ground glass, reticular and 
honeycomb patterns was evaluated by means of volume 
overlap on 5 MDCT scans. 

In this study, a second radiologist with expertise in CT 
image interpretation, defined the ground truth by generating 
manual outlines of LP as well as reticular ground glass and 
honeycombing patterns. For manual delineation, a tablet 
(Wacom Intuos3 Tokyo, Japan) was used with an active area 
of 305×305 mm with 5.080 lpi and accuracy of ±0.25 mm.  

The degree of volume Overlap between “ground truth” 
(O) and computer (C) derived borders is defined by: 

 

CO
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∪
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The value of Overlap is bound between zero (no overlap) and 
one (exact overlap). 

III. RESULTS 
Fig. 1 provides an application example of the proposed two 

stage 3D LF segmentation method. The proposed method 
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Fig. 3.  Application example of k-means clustering for separation of 
normal (green overlays) from abnormal (red overlays) lung 
parenchyma at three different views. 

provided accurate LF segmentation results including all the IP 
affected border areas, as indicated by the arrows.  

The volume Overlap separately for left LF and right LF, for 
the five scans analyzed, were 0.95±0.03 and 0.96±0.02 
respectively.  

Fig. 2 depicts an application example of vessel tree 
segmentation (red overlay) corresponding to the same case 
depicted in Fig. 1.    

 
Fig. 3 provides an application example of k-means 

clustering for separation of normal lung parenchyma (air 
component) from abnormal (IP affected) lung parenchyma at 
three different views. Normal and abnormal parenchyma 
voxels are illustrated with green and red colors respectively. 

Further differentiation of the abnormal lung parenchyma, of 
the case depicted in Fig. 3, into ground glass and reticular 
patterns is provided in Fig. 4. Green overlay corresponds to 
normal lung parenchyma (same as green overlay of Fig. 3), 
while yellow and red overlays correspond to ground glass and 
reticular opacities respectively.  

Volume Overlap for normal LP well as for ground glass, 
reticular and honeycombing patterns were: 0.89±0.02, 
0.70±0.04, 0.72±0.05 and 0.71±0.03 respectively. 

 

IV. DISCUSSION 
In this study, a system for quantification of DPLDs in 

MDCT is presented. Use of 3D data enabled application of 3D 
texture analysis by means of 3D co-occurrence features 
capable of capturing presence and extent of complex disease 
patterns. 

Quantification of IP patterns is formulated as a three-class 
pattern recognition problem to classify abnormal lung 
parenchyma into ground glass, reticular and honeycomb 
patterns, by means of SVM voxel classification. Abnormal 
lung parenchyma is provided by application of k-means 
clustering on previously segmented lung field (LF) volumes. 

Accurate LF segmentation is an important initial step in 
DPLDs quantification, as diseased areas attached to lung 
borders may not be included in LF (under-segmentation) and 
not participate in subsequent analysis. In this work, LF 
segmentation was achieved by 3D gray level thresholding 
followed by a texture based border refinement step.  

 
                        (a)           (b) 
 
Fig. 1.  Lung field (LF) segmentation example. Blue overlay 
corresponds to segmented left and right lung fields. (a) Result of the 
3D histogram thresholding with wavelet highlighting. Arrow indicates 
LF under-segmentation due to IPs affecting border. (b) Result of 
texture based border refinement step. 

 
Fig. 2.  Vessel tree segmentation example (red overlay). 

 
Fig. 4.  Quantification example of ground glass and reticular patterns 
of the abnormal lung parenchyma depicted in Fig. 3. Green overlay 
corresponds to normal lung parenchyma, while yellow and red 
overlays correspond to ground glass and reticular opacities 
respectively. 
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The performance of the method in 3D segmentation of LF, 
normal LP as well as quantification of IP patterns was 
evaluated by means of volume overlap, providing promising 
results. 

Specifically, a high performance was demonstrated in left 
and right LF segmentation (0.95 and 0.96 respectively), 
attributed to the texture-based border refinement step.  

The method demonstrated promising results in 
quantification of IP patterns. However, more accurate 
differentiation of normal from abnormal lung parenchyma in 
combination with additional texture features would further 
improve performance of the method in IP pattern 
quantification. 

V. CONCLUSION 
An automated system for quantification of interstitial lung 

disease as depicted in MDCT scans is presented. The system 
is based on three–class SVM classification utilizing 3D co-
occurrence features to classify abnormal lung parenchyma 
voxels into three categories: ground glass, reticular and 
honeycombing.  

Preliminary results are promising, suggesting an accurate 
and reproducible system. Such systems are expected to assist 
radiologists in detection and quantification of interstitial 
DPLDs. 

Future extensions of the proposed system should consider 
expansion of the training and testing datasets, investigation of 
additional 3D features as well as utilization of a multi-class 
SVM. The effect of analyzing VOI size in system 
performance should also be investigated.  

Furthermore, performance evaluation should consider shape 
differentiation metrics, as well as system performance 
comparison to inter- and intra-observer variability.  
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