
  

  

Abstract—Diffusion-weighted (DW) magnetic resonance 

imaging is the only non-invasive and in-vivo method available 

for studying brain white matter anatomical connectivity. 

Tractography algorithms have been developed to reconstruct 

neuronal tracts utilizing DW images. In this study, a new  

tractography method is presented. This is based on a fuzzy 

framework, as suggested by the intrinsic fuzzy nature of 

medical images. The proposed technique checks all possible 

paths -defined on the discrete image grid- between any pair of 

voxels and assigns a connectivity value, representative of the 

strength of the strongest path. Path branching, which is not 

well captured by binary streamline techniques, is inherently 

considered. Compared to other distributed tractography 

approaches, our method combines a) converged connectivity 

values for all image voxels, b) connectivities that do not drop 

systematically with the distance from the seed, c) path 

propagation with relatively high angular resolution and d) fast 

execution times. Results are shown on both simulated and real 

images, where predicted tracts agree well with a-priori 

anatomical knowledge. 

I. INTRODUCTION 

IFFUSION-weighted (DW) magnetic resonance 

imaging (MRI) [1] utilizes as a contrast agent the 

random, thermally-driven motion of water molecules, known 

as diffusion. In living tissues water diffusion is hindered by 

the various micro-structural compartments, such as cell 

membranes. Particularly in tissues with coherent structure, 

this hindrance is systematic and diffusion profile appears 

anisotropic [2], i.e. there is a preference towards a specific 

direction. The high diffusion anisotropy exhibited in brain 

white matter (WM) is of particular interest, as it can be used 

to infer brain anatomical structure, non-invasively and in-

vivo [3-5]. Under the assumption that diffusion is faster 

along than across neuronal axons, the direction of fastest 

diffusion coincides in many cases with the average WM fibre 

orientation in each image voxel [6]. Following these local 

fibre orientation estimates across the whole brain, WM tracts 
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can be reconstructed and brain anatomical connectivity can 

be studied, through a process known as tractography [3, 4]. 

There are many techniques to process DW images and 

obtain fibre orientation estimates on a voxel by voxel basis 

(see [7, 8] for a review). The objective is to use a set of DW 

images to estimate in each voxel the probability density 

function (pdf) P of water diffusion displacements. The 

maxima of the angular profile of P will give fibre orientation 

estimates [7]. The most commonly used technique that will 

also be utilized in this study is diffusion tensor imaging 

(DTI) [6, 9]. The diffusion tensor model assumes that P is a 

zero-mean trivariate Gaussian and estimates the covariance 

matrix of this function [9]. A 3x3 symmetric, positive 

definite matrix (diffusion tensor) is computed in each voxel. 

The eigenvalues of this matrix provide the water diffusion 

coefficients along the three orthogonal orientations indicated 

by the respective eigenvectors [6]. The unit-normalized 

principal eigenvector, i.e. the one associated with the 

maximum eigenvalue, is used as an estimate of WM fibre 

orientation in the voxel of interest. 

Early work on tractography was based on streamline-like 

algorithms, which attempted to propagate a curve through 

the vector field of principal eigenvectors [3, 4]. A starting 

(seed) point or starting region of interest (ROI) is defined 

and the algorithms reconstruct a path by following in space 

the fibre orientation estimates in each location of the image 

grid. Despite its success to delineate many major WM tracts 

[10], streamline tractography has two major limitations, 

which we are addressing here: a) there is no intrinsic way to 

provide a confidence measure of a reconstructed path, b) in 

the case of tract branching, propagation will continue only 

along one of the branches. 

The importance of having a measure that characterizes 

how feasible the reconstructed tracts are stems from the fact 

that DW images are by nature fuzzy [11, 12]. Experimental 

noise, hardware limitations, partial volume artifacts and 

limited spatial resolution are some of the factors that 

contribute to the fuzziness of the images. Therefore, 

connectivity between voxels is not adequately described by 

“hard binary” relationships, as performed in streamline 

tractography, where a connection is assumed to either exist 

or not. Fuzzy statements should govern track delineation to 

address the inherent inaccuracies of the DW images [11]. 

Towards this direction, probabilistic tractography 

techniques [13, 14] compute indirectly an index of 

anatomical connectivity by extending the streamline 
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framework. These techniques capture the uncertainty in the 

fibre orientation estimate, by treating it as a random variable 

and defining a distribution for it. Streamline tractography is 

then performed, but for each propagation step a random 

sample is drawn from the orientation distribution defined at 

the current location. Many streamlines are generated from a 

seed point and the fraction of streamlines that pass through is 

defined as the index of connectivity of the specific voxel to 

the seed. A drawback of these techniques is the inevitable 

reduction of the connectivity index with distance from the 

seed [13, 14]. Moreover, the repetitive streamline generation 

increases execution time, while the connectivity values can 

depend on the total number of streamlines launched.  

Front propagation algorithms attempt to overcome the 

limitations of streamline tractography by evolving a surface 

from the seed [15, 16]. Propagation is fastest along 

directions –normal to the surface- that are collinear with the 

fibre orientation estimates. In [15], the fast marching 

algorithm is used for front propagation. A map with front 

arrival times is calculated and tracts are generated in a 

backward fashion, from points of interest back to the seed, 

using gradient descent through the arrival times. In [16], an 

empirical orientation distribution function is used to drive 

the evolution of the front. In an iterative fashion, child fronts 

are generated by stepping away from parent points along the 

orientations of highest probability. These child fronts are 

merged to form a surface from which new child fronts will 

be generated.  

In this study, we present a new fuzzy method for 

performing distributed brain tractography that is not based 

on streamline propagation. We introduce a modified version 

of the fuzzy connectedness algorithm [12]; initially proposed 

for image segmentation. Fuzzy connectedness tractography  

(FCT)  assigns a global connectivity value between any pair 

of voxels, after searching exhaustively all possible paths that 

connect the two voxels on the discrete image grid and 

eventually finding the strongest. Compared to other 

distributed tractography methods, FCT provides in a single 

iteration converged connectivity values for all image voxels 

that do not drop systematically with the distance from the 

seed. Furthermore, path propagation is performed with 

relatively high angular resolution and combined in a single 

step with connectivity assignment. Algorithm 

implementation with dynamic programming allows execution 

at almost interactive speeds. The paper is organized as 

follows. In Section II, we give a brief overview of diffusion 

tensor imaging used to obtain fibre orientation estimates. 

Then, the fuzzy connectedness framework is presented. 

Modifications of the algorithm and adaptation to the 

tractography problem are described. Results that justify our 

method on simulated data and on human in-vivo MRI data 

are presented in Section III. Finally, current limitations and 

future work are discussed in Section IV. Preliminary results 

have been  presented by the authors in abstract form [17]. 

II. THEORY AND METHODS 

A. Diffusion Tensor Imaging 

In diffusion tensor imaging (DTI) [6], the image intensity 

Sk for a given voxel, measured after the application of a 

diffusion-sensitizing magnetic field gradient is given by [9]: 
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where So is the image intensity measured at the same voxel 

without a diffusion-sensitizing gradient, gk is the orientation 

vector of the k-th diffusion-sensitizing gradient, b depends 

on the magnitude and duration of the gradient and D is the 

unknown diffusion tensor. This symmetric tensor has 6 

elements, so at least 6 equations of the form (1) (i.e. k≥6 

measurements) are needed to solve the system. Once the 

tensor D is calculated [9], it is diagonalized and its principal 

eigenvector provides an estimate of fibre orientation in the 

respective voxel. 

B. Fuzzy Connectedness Framework 

Given a 3-dimensional digital image, we describe each 

volume element (voxel) of the image as a vector containing 

the three cartesian coordinates of the voxel centre. We then 

define a local fuzzy relation between any two voxels i and j 

of the image called affinity. The strength of the affinity is 

given by the function µ(i,j), determined by the product of a) 

the similarity of the image intensities or some intensity-based 

features at i and j with b) the adjacency of the two voxels. 

Normally, the adjacency is a binary relationship with a value 

of 1 for neighbouring and 0 for non-neighbouring voxels. 

Therefore, non-neighbouring voxels have a zero affinity.  

Given the local affinity relation, fuzzy connectedness (FC) 

assigns strengths f(a,b) of a global fuzzy relation called 

connectedness between any pair of voxels a and b. The 

connectedness value is representative of the weakest link of 

the strongest path between a and b. There are many paths 

that connect a and b in the spatial grid of the image. Each 

path can be considered a chain of voxels, with successive 

elements being adjacent and directly connected to each 

other. In the FC framework, the smallest affinity µ along a 

path, i.e. the weakest link of the chain, determines the 

strength of the path. Considering all possible routes 

connecting a and b, the strength of the strongest path will be 

the connectedness f(a,b). Therefore, after selecting a seed 

voxel, FC can compute a connectedness value between the 

seed and any other voxel in the image. The algorithm can be 

implemented using dynamic programming which allows 

execution at interactive speeds [18]. We should point out 

that both the fuzzy affinity and the connectedness strengths 

take values in the continuous interval [0,1]. 

C. Fuzzy Connectedness Tractography 

The idea of trying all possible paths connecting two 

voxels, finding the strongest path based on affinity values, 



  

and assigning a connectedness value between the two voxels 

of interest is attractive for brain tractography. In this study 

we use DTI to obtain local fibre orientation estimates. Thus, 

we utilize the principal eigenvector of the diffusion tensor to 

determine voxel similarity. The affinity function µ between 

neighbouring voxels i and j is a modified version of the 

voxel similarity function proposed in [15, 19]: 
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where e1(i) is the principal eigenvector of the diffusion 

tensor at voxel i, n(i,j) is the unit vector pointing from the 

centre of voxel i to the centre of voxel j and Γ a 

normalization constant to keep affinities in the [0,1] interval. 

The above function is peaked when all three vectors are 

collinear, i.e. when the eigenvector of voxel i points to the 

centre of voxel j and vice versa. 

One would anticipate that incorporating the above affinity 

function to the FC algorithm and choosing a seed voxel or 

region of interest (ROI) would produce a tractography-like 

connectivity map. Doing so, however, does not produce 

desirable results. FC will try all possible routes between a 

voxel and the seed that are legal connections on the spatial 

grid of the image. However there is no guarantee that these 

routes will be anatomically realistic. Particularly, 180
o
 turns 

are not inherently avoided by the FC algorithm. To get 

around such conditions we introduce a memory property for 

each voxel. Once a voxel j is identified as part of a path, its 

previous voxel i in the pathway chain, through which j is 

connected to the seed in a strongest way, is stored. This way, 

knowing the current and the previous voxel of a path, we can 

allow only forward path propagation. 

So far, the utilized neighbourhood size has not been 

defined. The number of neighbours of voxel i considered at 

each step will determine the number of candidate 

propagation directions. A straightforward implementation is 

to use the immediate 26 neighbours of each voxel, i.e. a 

3x3x3 neighbourhood. This allows 45
o
 steps between 

possible propagation directions. We can increase the angular 

resolution of path propagation, by increasing the 

neighbourhood size to 5x5x5 and include next nearest 

neighbours, 124 neighbours in 3D, as shown in Fig. 1. This 

will allow 22.5
o
 steps. In this case, though, neighbours that 

are not directly connected to the focal voxel i exist, such as 

voxel j in Fig. 1b. To avoid discontinuities in paths, we 

require that at least one nearest neighbour of the focal voxel 

is included in the path. More specifically, for each next 

nearest neighbour j (light gray in Fig. 1b) we consider the 

two nearest neighbours c and d (intermediate gray in Fig. 1b) 

that are transversed by the vector connecting the focal voxel 

i to j. We require that the connectedness value of at least one 

of the voxels c and d is not smaller than the connectedness 

value of j.  

The FC algorithm described in [18] is modified, as shown 

in the Appendix. The FC tractography (FCT) will output a 

map of fuzzy connectedness values between any voxel in the 

image and the seed voxel or seed ROI. In this study, we 

exclude from the algorithm voxels that have low diffusion 

anisotropy; assuming that these represent gray matter or CSF 

[5, 6]. In these regions, the fibre orientation estimates are not 

relevant [20]. We quantify diffusion anisotropy in each voxel 

using the fractional anisotropy (FA) index [5]: 
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where λi is the i-th eigenvalue of the diffusion tensor and λav 

is the average of the three eigenvalues. The FA is 0 for fully 

isotropic and 1 for infinitely anisotropic tensors.  

 An FA threshold of 0.2 is used to exclude voxels with too 

isotropic diffusion profile. For all other voxels, the algorithm 

will output a fuzzy connectedness value, describing the 

connectivity to the seed. By choosing the voxels with the 

highest FC values, we can identify regions that are more 

likely to be connected to the seed, given the chosen affinity 

function. The strongest paths underlying these connections 

can be found using backward propagation from the end 

points to the seed. Using the memory information, we can go 

from each voxel j back to its previous i, through which j is 

connected to the seed in a strongest way.  

D. Simulations 

A circular anisotropic phantom embedded in an isotropic 

medium was simulated (Fig. 2a). The trace of all diffusion 

tensors was 2.1x10
-3

 mm
2
/sec, typical of brain tissue [6]. The 

FAs were 0.7 and 0.3 for the anisotropic and isotropic voxels 

respectively. Isotropic tensors had a random orientation. For 

the voxels belonging to the anisotropic circular ring, tensors 

had their principal eigenvector tangent to the circle passing 

from that point. Once the diffusion tensor in each voxel was 

chosen, noise-free DW MRI signals were then simulated as 

described in [21]. Then, zero-mean Gaussian noise was 

added in quadrature to simulate the Rician nature of MRI 

noise [21]. The signal to noise ratio (SNR) was defined as 

 
Fig. 1. Different neighbourhood systems of focal voxel i. Only 

neighbours within the same slice as i are presented. Black arrows 

represent candidate directions for path propagation. Half of these 

directions will be discarded using the memory property, so that only 

forward propagation occurs. Dark gray: focal voxel, intermediate gray: 

nearest neighbours, light gray: next nearest neighbours. 



  

the average intensity of the non-diffusion weighted image (So 

in (1)) divided by the standard deviation of the noise. 

E. MRI Data Acquisition and Processing 

A whole-brain data set was acquired, with local research 

ethics committee approval, from a healthy male subject who 

gave informed consent. Scans were performed using a 

single-shot, spin-echo, echo-planar, diffusion-weighted 

sequence [1] (acquisition matrix 112x112 with in-plane 

resolution 2x2 mm, interpolated during reconstruction to 

224x224, TE=60 ms, TR=9500 ms) in a Philips 3T Achieva 

clinical imaging system. A parallel imaging factor of 2 was 

used. Three non-DW images were acquired and averaged. 

Diffusion weighting was applied along k=32 evenly spaced 

directions with b=1000 s/mm
2 

[22]. 52 slices were acquired 

with a thickness of 2 mm. 

Images were corrected for eddy current distortion using an 

affine registration implemented in FSL’s diffusion toolbox 

[15]. Brain was extracted from the images using the brain 

extraction tool [15]. To get isotropic voxels (1x1x1 mm
3
) 

and visually smoother results, the brain volume was 

trilinearly interpolated along the out-of-plane- direction. A 

diffusion tensor model was then fitted in each voxel using a 

linear least squares approach [5, 9]. Each tensor was 

diagonalized and the principal eigenvector and the FA were 

calculated. For comparison purposes, streamline 

tractography was performed when necessary, using the 

algorithm of [3]. As noted before, streamline tractography 

propagates a curve within the vector field of fibre orientation 

estimates [3, 4]. Contrary to FCT, it does not necessarily 

connects voxel centres, allowing thus greater spatial 

continuity. However, in each propagation step, one of the 

available neighbours is selected and propagation continues 

only towards this neighbour. 

III. RESULTS 

A. Simulations 

We first applied FCT to the simulated anisotropic 

phantom. Fig. 2a shows the principal eigenvectors 

superimposed on FA values. Fig. 2c and 2d show the output 

of FCT when two different neighbourhood sizes are utilized. 

The gray scale corresponds to fuzzy connectedness values. 

For comparison, the binary connectivity index obtained from 

streamline tractography for the same seed is shown in Fig. 

2b. The distributed nature of FCT compared to streamline 

tractography is evident. FCT identified strong paths arising 

from the seed, along with other weaker connections. The 

increased angular resolution provided by the larger 

neighbourhood is beneficial, since the discrete picture of Fig. 

2d resembles more a circular tract. Furthermore, FC values 

are increased in the latter case, since smoother transitions 

were possible between neighbours. This increase is 

desirable, since in an ideal noise-free regime a straight path 

would have a connectedness of 1 along its length. 

To test the behavior of FCT against noise, 100 simulations 

were performed at a given SNR level in a Monte Carlo 

fashion, i.e. random Rician noise was added in each 

simulation. The ROI shown in Fig. 2a with a black solid line 

defined a cross-section of the phantom. The central part of 

this cross-section (7 voxels) was within the anisotropic 

circular ring, while its edges (5 voxels each) were within the 

isotropic region. The FC values at the voxels along this ROI 

were studied across the 100 simulations. Fig. 3 shows the 

mean (denoted by a circle) and the standard deviation 

(denoted by horizontal bars) of the FC values at each of 

these discrete voxel locations, using the 3x3x3 and the 

5x5x5 neighbourhood. The noise-free FC values along the 

ROI are shown by a dashed line, which is continuous just for 

visualization purposes. The SNR in these simulations was 

15, representative of the noise conditions in a DTI 

experiment. The plots show the robustness of the calculated 

FC values against noise and their good agreement with the 

 
Fig. 2.  Application of FCT to computer simulated data (SNR=15). a) 

Principal eigenvectors of a numerical phantom superimposed on an FA 

map, b) Streamline generated from a single seed voxel and 

corresponding binary connectivity index (white=connected, black=not 

connected), d) Fuzzy connectedness values obtained using a 3x3x3 (c) 

and 5x5x5 (d) neighborhood. Seed voxels are indicated with an arrow. 

 
Fig. 3.  Mean (circle) and standard deviation (horizontal bars) of fuzzy 

connectedness values across 100 simulations (SNR=15), at voxel 

locations defined by the linear ROI of Fig. 2a (black solid line). Voxel 

counting starts from the top left corner of the phantom and increases 

towards the phantom centre. FC values were obtained using a) a 3x3x3 

neighbourhood, b) a 5x5x5 neighbourhood. Noise-free FC values are 

indicated by the dashed line. 



  

noise-free ones. Given that the simulated tract is very curved 

and that the affinity we use (2) penalizes curvature, it is 

expected that the connectedness of the stronger paths will be 

smaller than one. Deviation from this ideal value is reduced 

in the case of the large neighbourhood (Fg. 3b). Compared to 

the values obtained with a small neighbourhood (Fig. 3a), 

the connectedness of the voxels belonging to the circular 

ring are almost doubled. Furthermore, the contrast between 

the more central and stronger paths and the surrounding 

weaker paths is enhanced with the 5x5x5 neighbourhood. 

However, in both Fig. 3a and Fig. 3b, we can identify the 7 

central anisotropic voxels that have much greater FC values 

compared to the isotropic voxels that surround them. Fig. 2 

and 3 suggest that FCT can differentiate regions that exhibit 

coherent fibre structure from non-coherent ones. 

B. Human In-vivo Images 

FCT was also applied to human brain images. Typical 

execution times using the 5x5x5 neighbourhood were in the 

order of 20 seconds on a 3.2 GHz PC. Fig. 4 shows FC maps 

when a coronal seed ROI within the cingulum was used. Fig. 

4a shows a maximum intensity projection (MIP) of the raw 

FC values along the sagittal plane. In Fig. 4b (and for the 

rest of the results presented in this paper) a threshold has 

been applied to the FC values to keep only the most relevant 

voxels with the top 5% FC values and aid visualization. The 

results are superimposed on a saggital FA slice. We can 

observe, that the identified paths go correctly along the 

cingulate gurus and reach the hippocampus [10]. The 

streamlines generated from the same seed ROI are shown in 

Fig. 5. The streamlines are stopped at the level of the 

splenium of the corpus callosum and cannot reach the 

hippocampus. On the other hand, due to its distributed nature 

FCT goes through the relatively weak connections at the 

splenium level (evident by the reduction of the FC values) 

and reach the appropriate nucleus. 

Fig. 6 shows FC values for the corticospinal tract, when a 

seed ROI at the level of the pons in the right hemisphere is 

used. The maximum intensity projections (MIPs) of Fig. 6a 

and 6b show the less discrete nature of the results and the 

increased FC values obtained when increasing the 

neighbourhood size. The streamlines generated using the 

same seed are shown in Fig 7. In all cases, we can observe 

the greater fanning the paths exhibit to the motor cortex 

compared to the streamlines. This is due to the ability of the 

algorithm to consider tract branching, as shown in different 

coronal slices in Fig. 6c, where branching can be observed. 

Furthermore, streamline tractography gives rise to false 

positives, since wrongly connects the right corticospinal tract 

to the left motor cortex (Fig. 7). This is due to partial volume 

effects that occur at the pons because of the crossing of the 

corticospinal tract and the transverse pontine fibres [10]. 

FCT does not give rise to high connectedness paths to the 

left motor cortex, avoiding thus these false positives. 

The distributed nature of FCT is further illustrated in Fig. 

8, where single seed voxels are used. In Fig. 8a the seed 

voxel is placed in the fornix close to the septum. FC values 

indicate paths that agree well with a-priori anatomical 

knowledge [10]. Despite being a very high curved tract, the 

fornix is identified and can be differentiated from the 

background, which is thresholded and not shown. We can 

observe that apart from the main core of the fornix, some 

paths are identified at the level of the splenium of the corpus 

callosum that go posteriorly. Clearly these are false 

positives, however they are given a lower FC value than the 

core of the tract. In Fig. 8b, the seed voxel is placed in the 

genu of the corpus callosum and many callosal paths are 

 
Fig. 4.  a) Maximum intensity projection (MIP) of fuzzy connectedness 

values along the sagittal plane, for a seed ROI within the cingulum. 

The white arrow indicates the position of the seed. b) Thresholded MIP 

of FC values superimposed on a sagittal FA image. FC values are 

colour-coded.  

 
Fig. 6.  Color-coded fuzzy connectedness values for the corticospinal 

tract generated using FCT and a seed ROI at the level of the pons. FC 

values are superimposed on coronal FA maps. a, b) Maximum intensity 

projections of thresholded FC values generated using a) a 3x3x3 and b) 

a 5x5x5 neighbourhood. c) Different coronal slices of FC values 

generated using a 5x5x5 neighbourhood. 

 
Fig. 7.  Coronal view of streamlines generated from a seed ROI within 

the corticospinal tract, similar to the seed used in Fig. 6. Streamlines 

are superimposed on a coronal FA image. 

 
Fig. 5.  Saggital view of streamlines generated from a seed ROI within 

the cingulum, similar to the seed used in Fig. 4. Streamlines are 

superimposed on a saggital FA image. 



  

correctly identified. We can observe the many branching 

paths that are fanning out of the seed. 

Apart from connectedness values, FCT can provide the 

strongest paths that arise from a given seed. Fig. 9a presents 

the top 0.5% paths generated using FCT from a seed ROI in 

the splenium of the corpus callosum. Paths are generated by 

finding the voxels with the top 0.5% FC values and then 

propagating backwards to the seed. For each voxel belonging 

to a path, the principal eigenvector is plotted. Streamlines 

generated from the same seed are shown in Fig. 9b. We can 

observe that FCT paths exhibit greater branching.  

IV. DISCUSSION 

We have presented a new fuzzy approach for studying 

brain anatomical connectivity using diffusion MRI. The FCT 

algorithm checks all possible paths, as these are defined on 

the discrete image grid, between any pair of voxels in order 

to assign them a global connectivity index. This assignment 

is done by using a local voxel similarity measure, which 

depends on the fibre orientation estimates in each voxel. 

Under the assumption that WM tracts should exhibit 

relatively strong orientational coherence, paths belonging to 

the same tract are given a high strength and can be 

differentiated from the background (e.g. Fig. 2, Fig. 4a).  

Our technique produced distributed and fuzzy connectivity 

maps, contrary to streamline tractography that produces 

binary connectivity indices. For different seed regions in a 

healthy brain, results agreed well with a priori anatomical 

knowledge [10]. For all tracts shown, FCT assigned high 

connectivity values to voxels belonging to the main core of 

the tract. False positive connections are possible, especially 

in cases of highly curved tracts, such as the fornix. In Fig. 8 

the fornix appears to be connected to some tracts running 

posteriorly to the cortex. However, these false positives were 

in general characterized by lower FC values. Given the 

difficulty of validating tractography methods in living 

individuals, we showed the performance of FCT to simulated 

data, as well as to real data in regions where an anticipated 

answer exists. In the simulations presented in Fig. 2, FCT 

correctly identified the region with structural coherence and 

differentiate it from the isotropic non-coherent background.  

FCT is a fast algorithm that effectively finds the weakest 

link of the strongest path connecting two points. This link 

will determine the strength of the path. Similar connectivity 

indices have been introduced by other techniques, such as 

fast marching tractography [15] and front evolution 

tractography [16], which assign connectivity values based on 

the weakest link of paths. The former utilizes a map of front 

arrival times and the latter evolves a surface in 3D space. 

Fuzzy connectedness inherently searches for these weakest 

points. Compared to probabilistic tractography methods [13, 

14], FCT is faster (seconds vs minutes of execution) and also 

its connectivity index does not depend on the distance from 

the seed point. This is a drawback of probabilistic methods, 

where the connectivity index is defined as the product of 

transition probabilities between consecutive points of a path 

[13, 14]. The longer the path, the smaller this product will 

be. A recent method that uses Dijkstra’s algorithm and graph 

theory to perform distributed tractogtaphy [23] has also a 

similar problem, since it uses the product of transition 

probabilities as a connectivity index. However, the current 

implementation of FCT is not directly comparable to the 

probabilistic methods that utilize the uncertainty in the 

orientation estimates. Further validation of FCT and direct 

comparison with other tractography techniques is needed and 

we are currently working towards this direction.  

FCT inherently considers path branching (Fig. 6, Fig. 9), 

which is a major limitation of streamline approaches. 

However, the degree to which branching will be considered 

depends on the affinity function. The affinity utilized here 

causes a reduction of the connectivity when branching 

occurs. An affinity adaptable to the tensor eigenvalues 

should modify FC values in branching regions to reflect the 

data, rather than just the method. 

In this study, we used a voxel similarity measure based on 

the diffusion tensor principal eigenvector. Incorporating 

other similarity measures is straightforward, as FCT is 

independent of the affinity function utilized. Using 

uncertainty in the orientation estimates [13, 14], multiple 

fibre orientations per voxel [22, 24] and incorporating 

curvature in the affinity are some direct extensions of this 

work that should improve FCT performance. 

In the current FCT implementation path propagation 

occurs only between voxel centres. Streamline tractography 

provides smoother paths since it does not necessarily connect 

voxel centres (Fig. 9). However, the adopted path plotting 

 
Fig. 8. a) Maximum intensity projection of thresholded fuzzy 

connectedness values along the sagittal plane, for a single seed voxel 

within the fornix. b) Maximum intensity projection of thresholded 

fuzzy connectedness values along the axial plane, for a single seed 

voxel in the genu of the corpus callosum. Results are superimposed on 

FA images. The white arrows indicate the position of the seeds. 

 
Fig. 9.  a) Top 0.5% paths generated using FCT from a seed ROI in the 

splenium of the corpus callosum. b) Streamlines generated using the 

same ROI. Paths are superimposed on axial FA images. 



  

scheme used in Fig. 9 for FCT is very simple and smoother 

paths can be obtained using e.g. splines. Moreover, other 

ways to increase the algorithm’s spatial continuity are 

currently explored and will be the subject of a future study.  

APPENDIX 

The FCT algorithm calculates fuzzy connectedness values 

f(a) between every image voxel a and the seed voxel(s) s. 

FCT also outputs the Memory array that keeps for every 

voxel a its previous through which a is connected to the seed 

in a strongest way. Pairwise affinities µ  between each voxel 

and its neighbours are used as input, while a queue is used as 

an auxiliary structure. Pseudo-code is provided below, for 

the case of a 3x3x3 neighbourhood. In the case of a 5x5x5 

neighbourhood, modifications of the conditional branch 

between lines 14-20 should be made according to the 

algorithm description of Section IIB. 

 

1:  f(a)=0;  Memory(a)=undefined, for every image voxel a 

2:  f(s)=1;  Enqueue(s), for every seed voxel s 

3:  While (Queue!=empty)            

4:    Dequeue(i) with maximum f value; 

5:    prev=Memory(i); 

6:    For each neighbour j of i        

7:    fmin=min(f(i),µ(i,j)); 

8:    If (prev!=undefined)   

9:      Compute vectors n1=i-prev and n2=j-i;  

10:      Compute dot product dot=n1n2; 

11:      If (dot<=0) fmin=0;  

12:      End If; 

13:    End If; 

14:   If (fmin>f(j))        

15:     f(j)=fmin; 

16:     Memory(j)=i; 

17:     If (j is not in queue) Enqueue(j); 

18:     Else Update f(j);  

19:      End If; 

20:    End If; 

21:    End For; 

22:  End While; 
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