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Abstract— Many existing approaches in computer vision
to pose estimation make simplifications of the measurement
problem, either using silhouettes or assuming knowledge of
appearance or color. However, recognizing the pose of a person
who is persistently under cover remains challenging. We present
a real time monocular-video approach for markerless pose
estimation of human body under cover without manual ini-
tialization. In order to deal with heavy occlusion, we propose a
model that reinforces both feature space and model parameters
by adjacent parameters and a novel search framework that
aggregates detections over time to produce a more reliable
hypothesis. In addition, we have introduced a novel head model,
which has the combined effect of improving performance and
increasing efficiency. Furthermore, we have proposed a novel
representation to estimate upper leg posture using latent fea-
tures. In evaluation, we demonstrate the techniques to estimate
the covered body pose with various postures and obscuration
levels in two environmental settings.

I. INTRODUCTION

Estimating human body posture is important for automatic
recognition of human activities. There has been considerable
work in pose recognition in recent years. Posture of subjects
with well-represented appearance or silhouette can be esti-
mated reliably in some systems. However, recognizing the
pose of a person who is persistently under cover remains
challenging.

In application to diagnosis of sleep activities and syn-
dromes, the goal of our work is to estimate human poses
in conditions with persistent heavy occlusion. We do not
constrain the forms of the pose nor the level of occlusion
where the object may persistently be partially covered, near
fully covered, or uncovered, and the occlusion status may
change to one another. In addition, we do not require the
subject to be uncovered when he/she first appears in the scene
nor do we require manual initialization.

The principal sources of difficulty in performing this task
include: (a) change in appearance of the subject according
to the occlusion level (b) appearance data such as skin color,
head-shoulder contour, body outline and ridges of the legs
being inaccessible (c) motion data being partial, irregular
and obscured by the cover. Many existing approaches to pose
estimation make simplifications of the measurement problem,
either using motion data (e.g. [1], [4], [5], [17]) to extract
silhouettes, or assuming knowledge of appearance or color
(e.g. [3], [10], [13], [15]), and the subjects tend to wear
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Fig. 1. (a)raw image (b)system output (c)image observation Ih
t by

prewitt edge detector(d)reinforced feature space IIh
t with its hypothesis gt

(e)motion data mt (f)reinforced motion data mmt with its hypothesis rt

(g)auxiliary image observation Jt (h)reinforced auxiliary image observation
JJh

t with its hypothesis qt.

close-fitting clothing (or even to be unclothed [3]) in order to
extract such information more easily. These methods are too
restrictive and not applicable to the problem we encounter in
our field of study. Although there is some published research
investigating the monitoring of partially occluded humans
[6], [14], [19], [23], the methods examined do not deal with
pose estimation of consistently and almost wholly occluded
subjects. Wang et al. [20], [21] introduced measurement
models to detect the upper body consistently under cover.
Nevertheless, the method fails with unconstrained poses and
when tracking movement in our experiments. In addition, the
method estimates only the upper body.

We propose a real time monocular-video approach for
markerless pose estimation of human body under cover
without manual initialization. The outline of the method is
(1) to detect head and torso by an undirected head-torso
model (section 3) using the search method (section 5.3); (2)
to recognize upper leg posture based on the current torso
hypothesis by a novel upper leg model (section 4); (3) to
validate the detected human configuration using temporal
coherence (section 5.2); and after validation succeeds, (4)
to track head and torso using the previous hypothesis, the
linking hypotheses and the reinforced features by linking
hypotheses (section 2). In evaluation (section 7), the experi-
mental results show that the proposed model is promising to
estimate the obscured body pose with various postures and
obscuration levels. Furthermore, we compare the proposed
method with [20] and show that the performance of the pro-
posed method is largely improved. Regarding the computing
performance, without code optimization, it takes 0.1 second
to process a frame with a P4 2.4GHz CPU.



II. REINFORCEMENT BY LINKING PARAMETERS

Denoting X as the model parameters and Z as the image
observations, we propose a model for obscured subjects by
both adding auxiliary image observations {zk

i } for each
model parameter xi and adding relationships θ(xj , {zk

i })
between the adjacent model parameters and the image ob-
servations (Details are presented in the next section). We not
only reinforce the model parameter by the adjacent model
parameter but also reinforce the obscured feature space
in order to generate an accurate model parameter. As the
features are weakly represented in our problem domain, the
reinforcement by linking hypothesis applied to the obscured
feature space gains more advantage than by mere selection of
hypothesis. The joint posterior distribution of the proposed
model is

P (X|Z) ∝
∏

λ(xi, xj)
∏

i

(
∏
k

(L({zk
i }|xi)−θ(xj , {zk

i })))

(1)
To estimate the model parameter xi at time t, we reinforce
the image observations {zk

i } for xi using the known adjacent
model parameter xj from time t-1. We zero the confidence
weights of portion of features within the region A derived
from xj . The image observations can be in different formats,
e.g. binary edge maps, motion maps, and gradient edge
maps as in Figure 1 and edge box maps as in Figure 2.
Implementation details are given in the next two sections.

A. Head Tracker: multiple hypotheses and reinforced fea-
tures

Denoting the hypotheses of the head and torso at time t as
ht and ut, the main image observation for the head (prewitt
edge maps) as Ih

t , the auxiliary image observation for the
head (horizontal oriented edge maps) as Jh

t and the motion
data as mt (see Figure 1), we obtain the head hypothesis:

h∗t = arg max
ht

P (ht|ht−1, ut−1, I
h
t , J

h
t ,mt) (2)

To estimate h∗t , we firstly produce reinforced observations
IIh

t , JJh
t and mmt using the adjacent model parameter at

time t-1, ut−1. We zero the confidence weights of features
within the region A derived from ut−1. For edge maps (IIh

t

and JJh
t ), A is defined as a vertically expanded area of ut−1

for reducing noise. Next, we sample instances within the area
with high probability at the previous frame. We then use a
edge clustering model(section 3.1) to search the area over
IIh

t and mmt, producing two probability maps. We select
two hypotheses gt and rt with the highest confidence weight
from the two maps respectively. Importantly, we argue that
appearance features like IIh

t weight much more than motion
information like mmt because motion may be caused by
the cover surface movement or hand movement. Hence,
the hypothesis rt derived from motion cannot be relied to
define the state but can assist improving the hypothesis and
activating inspecting different evidences. We measure the
distance between gt and rt to confirm the precision of gt. If
|gt − rt| < α, where α is the tolerable distance, we define
h∗t = gt; otherwise, we produce an auxiliary hypothesis qt

(a) (b) (c)

Fig. 2. (a)Biomechanics (b)edge box map with h∗t (c)reinforced edge box
map

using JJt and ht−1 with the appearance model and define
the state h∗t as the average of qt, gt and rt.

In our method, the initial set of hypotheses h1 and u1

is proposed from an undirected head-torso model, which is
presented in section 3.

B. Torso Tracker with Kinesiology

Motion event is a mixture of target’s movement and
occluding objects’ movements. Motion detected in the target
will be used to update the hypothesis; motion by occluding
objects will not. With regard to the torso, occluding ob-
jects’ movements include arm movement and cover surface
movement where the subject may pull or remove the cover.
To identify real torso motion from motion data, we first
examine kinesiology. Considering the earth’s gravitational
force and biomechanics of human movement [2] in Fig 2
(a), movements of u must be accompanied with movements
of h but can happen with or without l movements because the
center of the gravity of the body infers that the head cannot
be the fixed point to support movements of u and l. That is,
denoting a head movement event as C1, a torso movement
as C2, and a hip movement as C3, we infer that P (C2) =
P (C1 ∩ C2 ∩ C3) + P (C1 ∩ C2∩ ∼ C3) = P (C1 ∩ C2).

We estimate new torso hypothesis based on motion, a
latent image observation Iu

t , previous torso hypothesis ut−1,
the previous adjacent model parameter ht−1 and the current
adjacent model parameter h∗t :

u∗t = arg max
ut

P (ut|ut−1, ht−1, h
∗
t ,mt, I

u
t ) (3)

When motion detected within the region of the previous
torso hypothesis ut−1 is over β percentage, it suggests a
potential timing to update the hypothesis. To confirm a torso
activity occurred, we check if motion occurs within the
region of ht−1 over γ percent. If true, we then adjust the torso
hypothesis based on the two types of image observations.
Firstly, we compute the intersection of the motion data and
a vertically expanded area A derived from ut−1 using ζ.
Denoting the intersection as D, we generate a temporary
torso hypothesis using the center of D: u1

t = D. Secondly,
we produce a latent image observation, edge box maps (see
section 3.2), as in Fig 2 (b) and reinforce the feature by
zeroing the confidence weights of features within a region B,
where B is a vertically enlarged area of h∗t . Thirdly, we input
the reinforced features and the current head hypothesis h∗t
to an obscured torso measurement model [20] and generate
another torso hypothesis u2

t . Then, we compare the distance



(a) (b)

Fig. 3. (a)four hypotheses by boosting model {Hi} (b)two hypotheses by
auxiliary head model {hk}

between u1
t and u2

t and define u∗t as follows.(% is the tolerable
distance.)

u∗t = { u1
tu

2
t , if(|u2

t − u1
t | > %)

u2
t , otherwise

(4)

III. UNDIRECTED HEAD-TORSO MODEL

A. Head Detector

A hierarchical boosting model [21] is utilized to propose
initial head locations. In this paper, we introduce a novel
edge clustering head model both to reduce falsely detected
hypotheses and to further refine the hypothesis. The model
uses modified binary prewitt edge value features, which are
different from the features used by the hierarchical boosting
model, to improve detection and estimation by inspecting
different evidences.

Given a prewitt edge image J and N estimated heads
{Hi} by the boosting model, where i = 1 to N, we apply
a binary filter to the expanded area of {Hi}, producing N
interested areas {Qi} and binary features J1

x,y . We build a
scoring mechanism to count the valid points at each location,
obtaining M scores within each area Qi. The score index is
S(j)i =

∑
J1

x,y , where (x, y) ∈ Qi and j = 1 to M. Next,
we replace head hypothesis Hi with the new hypothesis H1

i ,
which obtains the highest score among the area Qi.

H1
i = arg max

j
S(j)i (5)

Afterwards, we disqualify hypotheses with a flatness criteria
ω to eliminate smooth areas. If maxjS(j)i < ω, H1

i →
invalid. In the end, we output a list of validated head
hypotheses {hk}, where k = 1 to K and K ≤ N .

B. Torso Detector

Given a raw image, we first apply a horizontal oriented
edge detector and secondly transform the edge image into an
edge box map B [21] as seen in Fig. 5(b), where every data
point B(i, j) on the edge box map is either 1 or 0. Given the
edge box map B and the head hypotheses {hk}, we search
for a relatively smooth region with reasonable distance and
angle from each head hypothesis, i.e. an area near to the
head with the lowest interior edge box count, obtaining K
pairs of head and torso hypotheses {(hk, uk)}. Given a torso
hypothesis uk, a flatness index λ(uk) is created as follows.

λ(uk) =
∑

(i,j)∈uk

B(i, j) (6)

Fig. 4. (a)Head hypotheses {hk} by head detectors (b)Head to torso search:
{(hk, uk)} (c)Compare {uk} and choose the strongest one as u∗t . (d)Torso
to head search: output hypothesis (h∗t , u∗t ).

Next, we compare the K torso hypotheses {uk} and select
the strongest torso candidate u∗t as follows.

κ = min
k
λ(uk) (7)

if κ > 1,
{ul} = arg min

k
λ(uk) (8)

u∗t = {ul} (9)

otherwise,
u∗t = arg min

k
λ(uk) (10)

C. Torso to Head Backward Selector

Obtaining the strongest torso candidate u∗t , a torso-to-
head backward selector is developed to choose the strongest
head hypothesis. We compute the distance between the joint
location o of the torso u∗t to the head and the centers {ck}
of the head hypotheses {hk}. We then choose the head
hypothesis h∗t with the closest distance to o as the radius
rk of the head hk as follows.

p = arg min
k

(||o− ck| − rk|) (11)

h∗t = hp (12)

Fig 4 illustrates an example of the undirected head and
torso model, showing that the backward voting function
chooses a head particle in a related reasonable location, and
hence h3 will not be selected. Also, the resulting head-torso
pair (h2, u1) may not be identical to the original head-to-
torso pairs, i.e. (h1, u1) or (h2, u2).

IV. UPPER-LEGS POSE ESTIMATION

Existing approaches for locating legs use cues like silhou-
ettes, ridges, color blobs, parallel edges, or cone / rectangle
shape edge pixels and are under assumption of these features
are well represented. However, such an assumption is not
applicable for our problem domain. Here, we introduce a
novel representation of legs for obscured upper-legs pose
recognition. The representation model contains 12 features
{ek} to represent the sum of edge boxes in individual
subparts {Lk} in a given edge box map, where k = 1 to
12.

To test the novel representation, we manually collect
26 images to produce training dataset for constructing 10
different pose templates. Furthermore, instead of collecting
images for all poses, we collect images for template T3, T5,
T8 and T9 and use mirror projection theory to make training
data for symmetric templates T4, T6, T7 and T10. In training,



Fig. 5. (a)Representation of upper-legs pose model (b)Some edge box
maps.

Fig. 6. 10 upper-legs pose templates.

we use a variant of boosting [22] as the learning method
for generating a number of classifiers, and the classifiers are
built into a binary tree structure. In testing, we apply the
model to a new dataset, which includes a number of poses
and movements. Interestingly, we discover that although the
positions of abstract edge boxes in subareas are disused
by such representation where existing approaches tend to
maintain local location information, the proposed model is
capable to estimate the legs poses in the experimental results.

V. SEARCH METHOD

As the particle filter has been popularly adopted for
articulated human body analysis [3], [8], [12], initially we
tested this algorithm as the search framework, but we found
that the method is not suitable for obscured subjects (see next
section). Hence, we develop a search-before-detect frame-
work, which overcomes the problems encountered when
using particle filter.

(c)(a) (b)

Fig. 7. Problems of particle filter(single scan based detection): (a)Mean
(b)Mode ti(c)Mode tj .

A. Analysis of Particle Filter

Particle filters can be used in classical tracking or in Track
Before Detect (TBD) [3], in which a subject is considered
detected when the target likelihood by the tracking process
exceeds a threshold. Considering the sampling aspect, TBD
integrates the information over time, and detection is based
on power/energy that has been integrated over time by multi-
ple scan based sampling. However, in the detection aspect the
criterion is still single scan based. Although the samples for
defining current system state are derived from the previous
samples, in declaring detection, the computation depends on
testing whether the likelihood of the weighted mean or the
mode over current sample states exceeds a threshold, which
is based on the current spatial information. In our problem
domain, the subject is consistently and heavily occluded, and
we observe that spatial features are unstable and inclined to
be inadequate and distorted by strong noise. Thus, we argue
that the search method cannot be single scan based either
in sampling or in detection. Figure 7 illustrates problems
of single scan based detection. With strong noise, the mean
position is erroneous as in Fig 7(a), and the mode position
becomes unreliable as in Fig 7(c). In addition, particle filter
utilizes motion to process stochastic diffusion. However, in
our problem domain, motion tends to be partial, noisy and
infrequent, and thus we cannot rely on motion for pattern
construction.

B. Temporal Coherence

Spatio-temporal approaches have been shown to be advan-
tageous to overcome self-occlusion and image noise in recent
research [9], [11], [16]. These methods exploit temporal co-
herency on feature points such as motion and the silhouette.
In contrast, we exploit the property of temporal coherence
on system states rather than features, constructing temporally
coherent patterns. The distinction between applying temporal
coherence to features and system states is that using temporal
coherence in feature development risks transition errors from
observed data to estimated states, whereas applying temporal
coherence property directly on system states avoids such
risks.

On each time-step, t, the algorithm evaluates multiple
hypotheses for the head position, {hi}, and torso position,
{uj}, and a single hypothesis for the upper legs position,
gt. The strongest hypothesis Ht = (ht, ut, gt) is identified
(as described in section 3 and 4). If hypothesis Ht yields a
reasonably consistent position over a sufficiently long time



Fig. 8. Temporal coherence on patterns.

period, then detection with Ht is declared. We use a threshold
for head displacement, ρ, and a minimum stable period, τ .

Let k be a count of consecutive stable iterations; initialize
k=0. On each iteration, t, if |ht − ht−1| < ρ, increment k
by 1; otherwise, set k=0. Declare detection using Ht when
k > τ . An illustration is given in Figure 8. (ρ = 0.3, τ = 3
are used in our experiments.)

In this work, we use ht for a temporally coherent relation-
ship to test the performance of applying coherence of states,
and intend to explore more complicated models in the future
work, integrating the states of all parts.

C. Search Method: Greedy Search + Jumping

As the availability of spatial features available can be
variable and the true hypothesis can be temporarily hidden,
we conduct the search in an independent greedy manner
every frame both to collect as much information as possible
and to avoid filtering out the true hypothesis due to sampling.
In order to balance the computational cost, we construct a
jumping mechanism, which forces the greedy search to skip
neighbor rows below a detected point. The jumping func-
tion cooperates with an auxiliary computationally efficient
measurement model (section 3.1) to find an optimal position
in the local area. Given an M × N region of interest and
the current position (x, y), the next search position (a, b)
can be formulated as follows. (k =3 is used based on our
experiments).

(a, b) = {
(x+ 1, y + k) if(x, y) ∈ {hi}

(x+ 1, y) if(x, y) /∈ {hi} ∧ (x+ 1) < M
(0, y + 1) otherwise

(13)
Compared with post-processing hypotheses after search

using the weighted mean, the mode or clustering [23], the
jumping function avoids a merging process and saves effort
on both searching and post-processing.

VI. EXPERIMENTAL RESULTS

We evaluate the accuracy of our pose estimation algorithm
on three video sequences, containing 2653 frames. The video
was acquired with the frame rate 15fps and a resolution

TABLE I
RECOGNITION RATES

R(0.7) Head Torso Upper legs

Proposed Method 0.98 0.99 0.74
Referenced Method [20] 0.5 0.92 N/A

of 320*240, using a SONY infrared camcorder (DCR-HC-
30E). Fig 9 (a) shows system outputs on a fully covered
subject sleeping on different side of the torso and presenting
a number of postures; Fig 9 (b) contains different levels of
occlusion, including near-completely occluded and the half-
uncovered (Please note that more test results can be found in
the accompanied video ”Seq1.wmv” and ”Seq2.wmv”). The
same parameters were used in testing, which demonstrate the
obscured human pose estimator’s ability to follow a wide
range of human poses and obscuration. For a quantitative
evaluation, we systematically sample frame per 0.3 second
from the video clips, obtaining 586 frames. The sub-selected
frames are then manually marked to produce a reference
standard, and the output of the system is compared to the
reference standard. We evaluated our obscured human pose
estimation model by calculating how often individual parts
are correctly localized, for which we define a precision rate
P as the percentage of the overlapping area between the
reference standard and estimated output and a recognition
rate R(P) as the percentage of the frames to have precision
rate greater than given P value. The recognition rates of the
head, torso and upper legs pose with precision rate P = 0.7
for the proposed method and the referenced method [20]
are presented in Table 1.

The experimental results show that our algorithm is able
to locate the body parts and estimate their pose well even
though they are heavily occluded and appear in different
postures. Compared to the reference work, the performance
is largely improved. Regarding the computing performance,
without code optimization, it takes 0.1 second to process a
frame with a P4 2.4GHz CPU.

VII. CONCLUSION

We have presented an efficient monocular-video approach
for markerless pose estimation from a consistently fully or
partially covered human without manual initialization. In
order to deal with heavy occlusion, we have further proposed
a model that reinforces both feature space and model param-
eters by adjacent parameters and a novel search framework
that aggregates detections over time to produce a more
reliable hypothesis. In addition, we have introduced a novel
head model, which has the combined effect of improving
performance and increasing efficiency. Furthermore, we have
proposed a novel representation to estimate upper leg posture
using latent features.

We will continuously develop and enhance methods to
locate the rest of the body parts and to recognize human
activities during sleep. Amounts of experiments will be
conducted using patients and volunteers in the Sleep Lab
at the Lincoln County Hospital to determine performance



(b) Near fully covered / Partially covered / Uncovered 

(a) Body Rotation: various postures 

Fig. 9. System Outputs

on a large scale and to generalize across the variations in
human sizes, shapes, and behavior. Furthermore, we will
develop a system to diagnose movements characteristic of
sleep disturbances.
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