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Abstract— In this paper we present a fully automated
morphology-based technique for segmentation of nuclei in
cancer tissue images and we compare it with a common
technique for biomedical image processing, namely active con-
tours. We discuss the limitations of active contours in the
processing of immunohistochemical images characterized by
heterogeneously stained nuclear region and noise caused by the
presence of multiple tissue layers in the sample. We describe
the integration of the proposed approach in a fully automated
protein activity quantification tool. Finally, we demonstrate and
motivate through extensive experiments that our fully auto-
mated morphology-based approach provides better accuracy
compared to various active contours implementations.

I. INTRODUCTION

Bio-image processing is one of the most successful and
trusted research fields in that it leads to the development
of diagnostic tools helping pathologists and genetists in
the quantification of biological activities related to dis-
eases [1] [2]. The overall purpose is to promote early diagno-
sis and to develop new therapies for multi-factorial genetic
pathologies [3]. In this paper we focus on the problem of
monitoring protein (i.e. the EGFR/erb-B) activity involved
in the genesis and development of non-small cell lung carci-
noma (NSCLC). Localization and intensity of protein activity
in pathological tissues is commonly highlighted through
fluorescent-marked antibodies. In this contest, the commonly
used immunohistochemistry (IHC) [4] exploits intensity of
stains in tissue images to quantify protein activity intensity.
Image processing techniques applied to these images are
devoted to the accurate and objective quantification and
localization of such intensity in specific tissue regions such as
cytoplasm, membranes and nuclei. Images with nuclear acti-
vations are different from images with cytoplasm/membrane
activations. However, in both cases, identification of nuclear
membranes is a critical step to distinguish between cellular
compartments.

The main challenges in this context are related to the
non predictable size, shape non uniformity induced by the
pathological process and the lack of homogeneity of nu-
clear regions both in terms of morphological and chromatic
features. From the morphological viewpoint, this is due to
the overlapping of cells and nuclei and to the presence
in the sample of other non pathological structures, such
as connective tissue, blood vessels, lymphocytes, etc. From
the chromatic viewpoint, nuclear regions are characterized
by non-uniform stain intensity and color, thus preventing a
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trivial segmentation based on color separation. In fact, the
superposition of tissue layers as well as the diffusion of the
dyes on the tissue surface may bring the stains to contaminate
the background or other cellular regions which are different
from their specific target. Moreover, different portions of the
same tissue area may be not equally enlightened and stained,
thus complicating the distinction between foreground and
background.

Active contours is a well known technique used in biomed-
ical image processing [5] [6] [7] [8] [9]. In this context,
remarkable intensity variations inside and outside cellular
regions to be segmented stress the limitations of active
contours, calling for morphology-based approaches where
specific features of IHC images and other image types (e.g.
fluorescent multi-channel), characterized by strong intensity
and color variations within the target, can be effectively
expressed and exploited.

In this paper we present a fully-automated technique that
improves the accuracy of active contours in segmentation
of nuclei in cancer tissue images. More specifically, the
proposed approach exploits morphological information about
nuclei to detect regions filled with different colors through
a customized local adaptive thresholding technique. More-
over, chromatic information is exploited in our technique
to separate clustered nuclei through an improved watershed
algorithm.

Besides accuracy, another key metric to evaluate a bio-
image processing tool is its autonomy with respect to opera-
tor input. Active contours is a semi-automated method in that
it requires the operator to define a curve which the algorithm
cripples iteratively to fit the boundary of the target region.
On the contrary, the morphology-based technique we present
in this paper provides a completely automated nuclear seg-
mentation. Moreover, to enable fully automated procedure,
we developed a pre-classification step to distinguish between
images showing nuclear protein activation w.r.t. membrane
and cytoplasm activation. A quantification technique for de-
tection of protein activity in cytoplasm/membranes has been
already presented in our previous paper [10]. In this work,
we integrate the proposed nuclei segmentation technique in
a fully automated tool for protein activity quantification in
cancer tissues in all cell compartments (either membrane,
cytoplasm or nuclei). A pathologist can give a set of tissue
images as input to the tool which will recognize the type of
activation and provide the quantification result as output.

Summarizing, the contributions of this paper are the
following: i) the development of a fully automated new
morphology-based technique for segmentation of nuclei with
higher accuracy with respect to existing techniques; ii) the
integration in a fully automated tool for protein activation



Fig. 1. IHC tissue images. From the left: membrane activations (x400); cytoplasm activations (x200); nuclear activations (x800).

quantification in cancer tissue images; iii) the comparison
with various formulations of active contours technique high-
lighting its limitations for non-homogeneous IHC images.
In particular, active contours are not suitable to handle
morphological and chromatic information which is critical
for this kind of images. On the other side, active contours
are powerful in recognizing jagged boundaries. As such, our
results open the field to the research on new approaches
joining the advantages of both techniques to be applied to a
wide range of biomedical images.

The paper is organized as follows. Section II explains
the morphological procedure. Section III discusses contour
based approaches. Section IV describes the implementation
details and Section V shows experimental results. Section VI
concludes the paper.

II. MORPHOLOGY-BASED PROCEDURE
In this section we present our fully-automated

morphology-based procedure for nuclear segmentation
in IHC tissue images. The accurate tracking of nuclear
membranes is fundamental in IHC analysis. This is true not
only for images with nuclear activations but also for images
showing membrane as well as cytoplasm activations. In
fact nuclear segmentation is usually the first step for the
segmentation and quantification of protein activity of the
other cellular compartments (i.e. cellular membranes and
cytoplasm) [10] therefore a lack of accuracy of this step
may alter IHC analysis in a substantial way.

Differently from recent methods in literature [11] our
technique does not require any manual intervention by the
operator, thus overcoming the subjectivity and long time-
consumption of manual analysis. Moreover, our method is
a comprehensive procedure able to process images with
nuclear as well as with membrane or cytoplasm activity
without needing any apriori knowledge about the sample.
This is possible thanks to a pre-classification step that enables
the automated adaptation of the procedure to the type of the
image.

The images considered in this paper are characterized
by blue stain (Hematoxylin, H) for highlighting the tissue
structure, which represents the background. Brown stain
(Diaminobenzidine, DAB) reveals protein activity. In images
with membrane or cytoplasm activity only blue stain is
localized in the nuclei, whereas brown stain is distributed
respectively in the cellular membranes or in the cytoplasm of
cells (see Fig. 1). In this paper we will refer to this category
of images as Class I. In images with nuclear activations, on
the contrary, both the stains are localized in the nuclei. We
will refer to this category as Class II.

A. Separation of Stains
The original RGB image is separated into two monochro-

matic images containing respectively the contribution of the
brown stain (i.e. DAB ) and of the blue stain (i.e. H). For
this purpose, a specific color deconvolution algorithm [12] is
used, since it was shown to achieve better results than other
color segmentation methods, especially in IHC applications
[13]. Furthermore, it allows accurate separation not only of
H and DAB but of all the standard histological stains (e.g. H-
E, H AEC, etc.) as well as of any other stains, provided that
their RGB vectors are experimentally determined. The color
deconvolution plugin implemented by [14] was integrated to
our algorithm.

B. Pre-Classification of Images
Pre-classification of the sample in Class I or II is per-

formed by analyzing the distribution of the brown stain in the
image. As shown by Fig. 1, images with nuclear activations
(Class II) are characterized by a granular distribution of
the brown dye and by stained regions with a well-defined
round shape and nuclear-like dimension. In fact, the brown
stain is always localized in the nuclei. On the contrary,
in images with membrane/cytoplasm activations (Class I)
brown regions are less characterized in shape and dimension:
nuclear-like regions may be present again, but they are not
prevalent as in Class II.

Therefore the amount of nuclear-like brown regions can
be effectively used to discriminate between Class I and II.
In particular, in our technique the percentage of brown pixels
belonging to regions with nuclear-like shape and dimension
is adopted as classification feature.

First of all, our method detects the portions of tissue
stained by brown. This is achieved through automated thresh-
olding, i.e. by imposing an intensity threshold to the brown
monochromatic component and selecting pixels whose in-
tensities are lower than the threshold. The optimal threshold
is obtained through the well known Isodata algorithm [15].
Then nuclear-like particles are highlighted on the base of
their shape and dimension: regions with low circularity or
very small area are selectively removed.

Finally the percentage of pixels of stained tissue belonging
to nuclear-like regions is calculated. Images with a low
percentage (i.e. below 20%) are classified in Class I (i.e.
membrane or cytoplasm activations), all the other images
are classified in Class II (i.e. nuclear activations).

C. Segmentation of Nuclear Membranes.
1) Binarization: Nuclei are separated from background

through automated thresholding of the monochromatic im-



ages coming from stains’ separation. Since intensity level
may vary among different regions of the sample because of
inhomogeneous illumination and inconsistent staining, that
are typical problems of IHC imaging [16], a local adaptive
threshold [17] dependent on the local distribution of the
intensities is applied. This leads to a better accuracy than
traditional global thresholding. The procedure is customized
through a statistical analysis of local intensity distribution.
This analysis aims to minimize the effects of unrepresentative
pixel values due to noise. The size of neighbourhood is
selected taking into account the resolution of the image and
the dimension of nuclei (for details see [18]).

For images of Class I the only contribution of the blue
stain is considered to distinguish nuclei from background.
On the contrary, for images of Class II both the stains are
binarized and merged through binary union, thus taking into
account the contribution of both the dyes.

2) Separation of Clustered Nuclei: Overlapped particles
are separated through watershed algorithm [19]. As it is well
known, intensity variations may lead watersheds to over-
segmentation errors (i.e. to split individual nuclei in more
than one particle). This problem arises especially in images
with membrane/cytoplasm activations, due to the local in-
tercontaminations of the two dyes used to highlight differ-
ent cellular structures (i.e. nuclei and cellular membranes,
or nuclei and cytoplasm, respectively). Unfortunately these
intercontaminations occur quite often, being a consequence
of the staining procedure.

In our approach over-segmentations are prevented through
selective remerging of the split nuclei. First of all, the
couples of particles split by watersheds are selected and
the interposed area between each couple is scanned, thus
computing the relative amount of blue and brown pixels.
Couples of particles with a prevalence of brown pixels
(i.e. belonging to cellular membrane or cytoplasm) in the
interposed area are interpreted as two separated nuclei and
let unchanged. On the contrary couples with a prevalence of
blue pixels (i.e. belonging to nuclei) in the interposed area
are interpreted as a single nucleus and remerged (see [18]).

3) Postprocessing: As already mentioned in the Introduc-
tion, the presence in the same sample of different types of
tissues and cells adds a further element of complexity to
the segmentation of IHC tissue images; in particular, nuclear
segmentation may be led to error by lymphocytes that are
usually smaller than nuclei but may appear very similar in
shape and color. This problem is handled in our procedure
through size analysis. Particles whose area is considerably
lower than the average area of all the detected nuclei are not
included in the final segmentation.

4) Extraction of Boundaries: For each detected nucleus
the best-fitting ellipse is calculated and outlined. This step
is aimed at improving the accuracy in the estimation of the
nuclear membrane, which is typically a smooth rather than
a jagged curve.

For details about parameters and implementation see Sec-
tion IV.

III. ACTIVE CONTOURS APPROACH
Our morphology-based method is compared in this work

with active contours, a highly popular approach in Computer

Vision that was successfully used in several applications
including medical imaging [20], [21]. After a general theoret-
ical introduction, in this section we describe how we applied
active contours to the segmentation of nuclear membranes in
IHC images.

A. Preliminaries

Active contours (also called snakes) are computer-
generated curves that evolve iteratively within the image
from an initial position toward the boundary of the target
object (i.e. the nuclear membrane, in our application) through
the minimization of an energy functional [20].

This functional is generally a linear combination of: i) an
image term Eim based on the characteristics of the image
(e.g. gradient magnitude distribution as well as region-based
statistical features), which attracts the active contour to
the target boundary; ii) an internal term Ei based on the
characteristics of the curve (e.g. tension, rigidity, etc.), which
prevents the curve from interrupting or rolling up and ensures
its smoothness; iii) a constraint term Ec defined by the user
(e.g. external forces, apriori known shapes as well as points
that should necessarily lie on the detected boundary). The
functional is shown in the following equation

Esnake(C) = Eim(C)+Ei(C)+Ec(C), (1)

where C is the evolving curve. The optimal curve C̄ is
obtained through minimization of the functional, as:

C̄ = argmin
C

Esnake(C). (2)

Snakes are generally classified according to the curve’s
representation as either parametric active contours [20] [22]
[23], where the curve in the xy plane is described explicitly
in terms of a parameter t as C(t) = (x(t);y(t)); or geometric
active contours [24] [25] [26], where the curve C is described
implicitly as a zero level set of a higher-dimensional function
f , i.e. C : f (x,y) = 0. Both the typologies of active contours
have been successfully used for image segmentation in sev-
eral applications and tasks, including medical imaging [21].
Geometric active contours are well-suited to detect objects
with very elaborate shapes, however they are computationally
more complex than parametric ones due to their higher-
dimensional formulation and require non-trivial efforts to
incorporate shape apriori information into the model [27]
[28] [29] [30]. A straightforward translation from almost any
parametric active contour to a geometric active contour is
anyhow possible through an explicit mathematical relation-
ship [31].

Active contours may be also classified according to the
formulation of the image term guiding the evolving curve
towards the target boundary as either: i) edge-based snakes,
with image energy based on local gradient information;
or ii) region-based snakes, with image energy based on
global image information (e.g. statistical features). Edge-
based snakes are generally more precise than region-based
active contours: in fact the image term has sharp maxima at
the gradient boundary. However region-based formulations
are less sensitive to curve initialization and to noise and have
less difficulties moving into concavities. Several attempts to
integrate edge-based and region-based information [32] [33]



have also led to the development of mixed snakes, with image
energy based on a combination of both the terms.

B. Parametric Spline-based Active Contour
In this work the parametric spline-based active contour

presented in [22], one of the most theoretically valuable in
literature, was used to segment nuclear membranes in IHC
tissue images. It is based on the parametric representation of
the closed curve C in terms of a parameter t through B-spline
basis functions, as:

C(t) =
[

x(t)
y(t)

]
=

+∞

∑
k=−∞

ckϕ(t − k) (3)

where ck is the vector of coefficients (knot points) and ϕ is
the basis function.

Main prerogatives of this active contour are i) cubic B-
splines representation of the curve, that allows the elimina-
tion of the explicit internal energy term from the functional
(1) thanks to the implicit smoothness due to minimum cur-
vature interpolation property, and ii) a formulation of image
energy as linear combination of either edge-based (taking
into account gradient magnitude as well as its direction)
and region-based terms, thus inheriting the advantages of
both [23]. The relative contribution of the two terms can
be modulated through simple variation of the coefficients, so
that a general unifying framework is provided which includes
all the most widely used formulations of active contours.
Further details are provided in [22], [23] and [34].

C. Application to Segmentation of Nuclei in IHC Images
We developed a semi-automated procedure for the

segmentation of nuclear membranes in IHC tissue im-
ages through spline-based active contours. As for our
morphology-based technique, this procedure can be applied
to images with nuclear activations as well as membrane or
cytoplasm activations without any apriori knowledge about
the image type.

The procedure consists in feeding active contours with
initial boundaries manually traced by a pathologist and with
a monochromatic image that provides the information needed
for the calculation of the image energy term in (1). The
active contours automatically converge to the final nuclear
boundaries. The procedure allows the user to choose between
three different active contours’ formulation, respectively
with edge-based, region-based and mixed image energy (i.e.
equally weighted linear combination of edge and region-
based terms). In order to perform an exhaustive comparison
between active contours approach and our morphology-
based method, all the three possible formulations of active
contours were used in our experiments. In case the sample
belongs to Class I (membrane/cytoplasm activations), image
energy is calculated considering the contribution of the only
blue stain. On the contrary, in case the sample belongs
to Class II (nuclear activations), image energy is obtained
by the contributions of both the dyes (see Section II for
explanation). For this purpose the two monochromatic stains
are merged together through bitwise AND operation. The
techniques for pre-classification of image and separation of
stains are the same used for the morphology-based approach
and described in Section II.

As it is well known, one of the major drawbacks of
active contours is that they are extremely sensitive to curve
initialization, and they may show a lack of convergence far
away from the target boundary [21]. For this reason, in order
to obtain the best performance achievable, the operator was
asked to trace the initial curves very close to the nuclear
membranes. An example is shown in Fig. 2, where the red
curves are the initial boundaries traced by the operator close
to the nuclear membranes and the black curves are the final
boundaries obtained through active contours approach. The
parameters of the active contours (e.g. knot spacing, etc.)
were tuned by running experiments on real IHC images and
are provided in our URL [35].

IV. IMPLEMENTATION

The procedures were implemented in Java as plugins for
ImageJ [36], a public domain software for image analysis and
processing. We inherited the whole class hierarchy of ImageJ
1.38 API and the open-source plugins and macros for color
deconvolution, local thresholding and spline-based snakes
[14], [37], [34] and we implemented our own functions and
classes. The parameters of both the methods were set by
running experiments on real IHC images. See our URL [35]
and [18] for details.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Our morphology-based method and the active contours ap-
proach were compared on the same real IHC images, on more
than 900 nuclei. These images showed lung cancer tissue
stained by H-DAB and were acquired through high resolution
confocal microscopy with three different enlargements (x200,
x400 and x800). Ten different histological samples were
used to take the pictures: five of these samples showed
activations of the target protein in the cellular membrane of
the cancerous cells, two in the cytoplasm and the remaining
three in the nuclei (see Fig. 1 for some examples).

The morphology-based method did not require any manual
intervention by the user, since it is fully-automated, whereas
active contours had to be manually initialized by a skilled
operator by tracing boundaries very close to the target
nuclear membranes (see Fig. 2), thus leading the active
contours to the best performance achievable.

In order to perform an exhaustive comparison, experiments
were run with three active contours, with different formula-
tions of the image energy functional, i.e. respectively edge-
based, region-based and mixed (with equally weighted linear
combination of edge and region-based terms [35]).

Fig. 2. Example of active contours’ segmentation (manual initial boundaries
in red, final converged active contours in black). Despite they are initialized
very close to the target nuclear membranes, several examples of lack of
convergence of active contours are clearly visible in the segmented image.



We evaluated the accuracy of the segmentations performed
by both the automated and the semi-automated methods
through a very strict pixel-wise comparison with reference
nuclei provided by manual operators; this procedure was
repeated for each of the 900 nuclei in our validation dataset;
then the tested methods were compared with each other by
calculating: i) the mean accuracy achieved in the valida-
tion dataset; this allows to estimate the quality of nuclear
segmentation achievable on average by each of the tested
methods and to deduce which is statistically the best; ii) the
percentage of nuclei in which the best technique overcome
the accuracy of other techniques; this adds meaningfulness to
the previous result, being a measure of the recurrence of the
superiority of the best technique over other methods (in fact
average accuracy may be biased by few non-representative
critical instances).

Segmentation accuracy was estimated as

Accuracy(%) = 100 ·
[

1− ∑(R XOR A)
∑(R OR A)

]
, (4)

where R is a binary image where pixels belonging to the
reference manual nucleus are set to 1 and A is a binary image
where pixels enclosed by the nuclear boundary provided
by the automated (or semi-automated) procedure are set to
1. As shown by Fig. 3, R XOR A returns the pixels that
were misclassified by the automated method (i.e. non-nuclear
pixels classified as nuclear and vice-versa) whereas R OR A
returns the totality of the evaluated pixels: therefore accuracy
is the complementary of the percentage of misclassification.

Manual segmentation may lack reproducibility [11] due
to the critical characteristics of IHC tissue images (e.g.
small dimension of nuclei, superposition of cells and tissues,
heterogeneity of staining, intercontamination of dyes, etc.).
To improve the objectivity of our validation for each nucleus
ten skilled operators were asked to outline manually the
nuclear membrane. Thereafter, the reference nucleus used
for the validation was defined by only those pixels enclosed
by the most part of the ten manual boundaries.

Morphology-based method achieved on average an 84%
accuracy, overcoming mean accuracy of edge-based, mixed
and region-based active contours of respectively 10%, 12%
and 14%; these values were obtained by averaging the
accuracy achieved in all the tested nuclei. The graph of
Fig. 4 shows mean accuracy values obtained grouping results
according to the type of the sample (i.e. with membrane,
cytoplasm or nuclear activations): the morphology-based
technique achieved the best accuracy at all times. Despite
they were manually initialized very close to the target bound-
aries, all the three formulations of active contours tested
in our experiments were overcome by our fully-automated
procedure.

It must be noted that edge-based snakes performed slightly

Fig. 3. Calculation of segmentation’s accuracy. Example.

Fig. 4. Mean percentage accuracy achieved by respectively morphology
based procedure, edge-based, mixed and region-based active contours in
validation samples with membrane, cytoplasm or nuclear activity.

better than region-based snakes mainly because the initial
curve drawn by the skilled operator is very well fitting to
the nuclear membrane. However, active contours still fails in
detecting nuclear regions in presence of intensity gradients
inside the region. Moreover, it is well known that edge-
based snakes are the most sensitive to curve initialization
[22], so they might have lacked convergence if the initial
curve had not been so close to the nuclear membrane as it
was in our experiments. Region-based active contours are
less sensitive to gradients, however this technique also fails
when nuclei are characterized by non-homogeneous staining.
Moreover, because it is based on statistical characterization
of background, its performance is worse when images con-
tain heterogeneous regions with different distribution and
density of nuclei. The main reasons for the superiority
of the morphology-based approach we propose lies in the
binarization step and separation of clustered nuclei. The
binarization step handles the heterogeneity of staining and
the consistent intensity variations within the target through
the adaptive local thresholding algorithm. The local nature of
this approach enables a better distinction between the colored
nuclear regions and the background. As a result, regions
are successfully identified even if they are characterized by
intensity variations and heterogeneous staining. On the other
side, the enhanced watershed algorithm exploits color infor-
mation to merge oversegmented nuclei compared to active-
contours that take gray-scale images as input. RGB versions
of active contours [5] [9] suffer from similar limitations in
that they cannot handle heterogeneous stained local regions.
Ultimately we found out that active contours are in general
not expressive enough to handle complex and heterogeneous
chromatic information in IHC, where the targets cannot be
distinguished by simple color/texture features. Therefore a
correct segmentation requires high-level interpretation of the
biological information carried by color, which is actually not
provided by any available active contours formulation.

The second test we performed (i.e. nucleus by nucleus
comparison) showed that our technique was more performing
than active contours in the most part of the nuclei of the
validation dataset: in fact its accuracy was higher than edge-
based, mixed and region-based active contours’ accuracy
respectively in 65%, 66% and 67% of the evaluated nuclei.

Fig. 5 shows examples of nuclear segmentations per-
formed by the tested techniques (most evident errors made
by active contours are highlighted in red).



Fig. 5. Examples of nuclear segmentations performed by the tested methods. Most evident errors made by active contours are highlighted in red.

VI. CONCLUSIONS
In this paper we compared the effectiveness of a

morphology-based and active contours approaches to nuclei
segmentation. The experimental results show that our fully-
automated morphology-based technique performs better nu-
clear segmentations than various formulation of state-of-
the-art semi-automated active contours approach in IHC
tissue images. Morphology-based strategy is less sensitive
to intensity and color variations within the target region as
well as overlapped nuclei that deviate the active contours far
from the target. As a future work, we are going to extend
our morphology-based technique to other types of biomedical
images, including 3D applications.
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