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Abstract— Accurate segmentation of magnetic resonance im-
ages (MRI) corrupted by intensity inhomogeneity is a chal-
lenging problem and has received an enormous amount of
attention lately. On the basis of the local image model, we
propose a different segmentation method for MR brain images
without estimation and correction for intensity heterogeneity.
Firstly, we obtain clustering context based on the distributing
disciplinarian in anatomy that gray matter (GM) is always
between white matter (WM) and cerebrospinal fluid (CSF) in
brain, which ensure the three tissues exist together in each one.
Then the size of the context is optimized by a minimum entropy
criterion. Finally, FCM algorithm is independently performed
in each context to calculate the degree of membership of a
pixel to each tissue class. The proposed methodology has been
evaluated for simulated images and shown the better results.

I. INTRODUCTION
Magnetic resonance imaging (MRI) has many advantages

over other diagnostic imaging modalities, such as high
contrast between soft tissues, high spatial resolution and
inherent 3D nature, thus has gained wide clinical applications
[1]. A first step in medical image analysis is separation
of the input image into meaningful regions, which could
involve organ detection or tissue characterization. Currently,
in many clinical studies segmentation is still mainly manual
or strongly supervised by a human expert,which make the
segmentation irreproducible and deteriorating the precision
of the analysis of the segmentation. Hence, there is a real
need for automated MRI segmentation tools. Unfortunately,
there are mainly three considerable difficulties in segmenting
MRI data: noise, partial volume effects (PVE) and intensity
inhomogeneity. Intensity inhomogeneity, also referred to as
bias field, appears as a continuous, slowly varying shadowing
effect over the whole image, which causes intensities of the
same anatomical structures be not constant. Although MRI
images may appear visually uniform, such inhomogeneities
can result in serious misclassifications when intensity-based
segmentation techniques are used [2]. To eliminate or al-
leviate the adverse impact, two kinds of methods have
been proposed for removing artifact signal inhomogeneities,
namely, prospective and retrospective correction [3]. The
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prospective methods try to avoid this type of artifact in the
acquisition process by using special hardware of specific
sequences. Thus, it is unrealistic to compensate different
scanned patients with a fixed estimated profile. The drawback
restricts the validity of prospective correction methods.

Retrospective image processing methods have been more
intensively developed, since they do not require special
acquisition protocols and can be applied to removing both
machine and patient-induced imhomogeneities. Various ret-
rospectively approaches have been proposed to compensate
the intensity inhomogeneities. Among them, surface fitting
such as spline basis functions [4] and polynomials basis
functions [5] via fitting a set of data points as closely
as possible to the image brightness function. Correction is
done by dividing computed surfaces voxel-by-voxel from the
orginal image. However, the parameters of the basis functions
or polynomials are estimated from manually or automatically
selected reference points, which is either time consuming
or unreliable. Homomorphic filters [6], assume that intensity
inhomogeneity is a low-frequency signal that can be removed
by a high pass filtering, while high-frequency details in MR
images were also corrupted. The method based on Fuzzy C-
means [9] minimizes the sum of class membership function
and uses the first and second order regularization terms that
ensure a smooth bias field. An extension of Fuzzy C-means
based algorithm has been proposed in [10], where high
robustness to salt and pepper noise and algorithm efficiency
are the main benefits. Instead of working in the spatial
domain, correction can be performed in wavelet domains [11]
or Probability density functions domain. Such domains allow
different uses of the assumptions made on intensity non-
uniformity. Once data are corrected, they are transformed
back to the spatial domain.

Multicontext fuzzy clustering (MCFC) is proposed in
Literature [1]. Based on a novel image model which takes
into account both artificial and inherent intensity inhomo-
geneities, multiple clustering contexts are generated for each
pixel, and within a context, the C classes of tissues exist
together and there are considerable pixels in each tissue
class. Fuzzy clustering is independently performed in each
context. The segmentation is no longer need the estimation
and correction procedures for intensity inhomogeneities.

In this paper, a simple and effective segmentation method
is presented to segment Resonance Brain Images Corrupted
by Intensity Heterogeneity without estimation and correction
for it. The rest of this paper is organized as follows. In
Section 2, the local image model and conventional Fuzzy
C-means algorithm are presented. Our proposed method is
described in Section 3. Experimental and comparison results



are presented in Section 4 and we conclude this paper in
Section 5.

II. BACKGROUND
A. Local Image Model

A traditional approach to model intensity inhomogeneities
in MRI images has been proposed in lectures[2] [6-7]. Bias
field is commonly modeled as a continuous, slowly varying
multiplicative over the image domain

yi = αixi + ni, xi ∈ {v1, v2, . . . , vc} (1)

where yiand xi are the observed and true intensity at the pixel
i receptively; niis the measurement noise of independent
white Gaussian distribution at pixel i; c is the desired number
of tissue classes; vkis true intensity for each tissue class k.

The modeling mentioned above can model the artificial
intensity variations very well. But inherent intensity inho-
mogeneity is not considered in it. So in this paper we use
the modal proposed by Chaozhe Z. Jiang et al [1], in which
the intensity of inhomogeneities contains both artificial and
inherent intensity inhomogeneities, as expressed

yi = αixi + ni, xi ∈ {v1, v2, . . . , vN} (2)

where yi,xi,ni,and c are the same as mentioned above,N is
the total number of pixels in the MR image. In this local
model, artificial intensity inhomogeneity is modeled as bias
field αi. The true intensity vi is used to model inherent
intensity inhomogeneity, and it varies with the location i in
the brain.

Clustering context is an important concept in the seg-
mentation with intensity inhomogeneities. It is defined as a
spatially connected subset of 2D MR images or 3D volume
data. There are three assumptions for each context.

1. Bias field αi, 1 ≤ i ≤ N , is smooth and slowly varying.
From this assumption, the bias field αi within a clustering

context W can be approximately treated as a constant field:
αi ≈ α, ∀i ∈ W .

2. Within a context, the c classes of tissues exist together
and there are considerable pixels in each tissue class. Due to
the complexity of brain tissue structure, which causes bends
and twists of spatial distributions of tissues of WM, GM,
and CSF, even a properly small size context can make this
assumption solid. With this assumption, the cluster number,
here it is equal to c, can be determined.

3. Within a context, all pixels of the same tissue have sim-
ilar true intensities. According to the distributing disciplinar-
ian in brain tissue: the pixels belonging to the same tissue
are homogeneity, therefore they have similar intensities.

Because there are c classes of tissues in a cluster-
ing context W , the total number of true intensities in
the context reduces to the fixed tissues number c: xi ∈
{v1, v2, . . . vc},∀i ∈ W .

Therefore, (2) can be simplified in the local model:

yj
i = xj

i + nj
i (3)

where yj
i is the observed intensity and xj

i is the true intensity
modulated by the bias field at pixel i in clustering context

Wj ; nj
i is measurement noise at pixel i in Wj ; vj

k(k =
1, 2, . . . c) is the approximate true intensity of the kth tissue
in Wj ; αj is a constant in context Wj ; Nw is the total
number of clustering contexts in volume data; and c is the
desired number of tissues.

Based on this local model, the essential characteristics
of the ideal image model, which was once corrupted by
both artificial and inherent intensity inhomogeneites can be
recovered. This facilitates any segmentation method.

B. Fuzzy C-means Algorithm

Fuzzy C-means (FCM) originally introduced by Bezdec
(1981) as an improvement of the hard k-means algorithm,
which is one of the most widely used fuzzy clustering
techniques [12],The idea of the FCM is to partition n data
points into c clusters by minimizing the following objective
function:

J(µ, ν) =
c∑

k=1

n∑

i=1

µm
ikd2(xi, νk) (4)

subject to:
∑c

k=1 µik = 1 ,where µik indicates the member-
ship degree to which data point xi belongs to kth cluster,
m is the weighting exponent (in our study, m = 2), and
νk is the fuzzy cluster center for cluster. µ is the c × n
fuzzy c-partition matrix, and ν is the matrix of prototypes of
the clusters. Using the Euclidean norm, the distance metric
d measures the vector distance of a feature vector from a
cluster center in the feature space, i.e.:

d2(xi, νk) = ‖xi − νk‖2 (5)

The objective function is minimized when data points close
to the center of their clusters are assigned high membership
values, and low membership values are assigned to data
points far from the center. The membership functions and
cluster centers are updated by the following expressions:

µik =
c∑

j=1

(
d(xi, νk)
d(xi, νj)

)−
2

m−1 (6)

and
νk =

∑n
i=1 µm

ikxi∑n
i=1 µm

ik

(7)

In implementation, matrix ν is randomly initialized, µ and ν
then and are updated through an iterative process using (6)
and (7), respectively.

III. METHODOLOGY

In order to keep the competence of the whole algorithm
for overcoming the impact of the intensity inhomogeneity,
the crucial point is that the contexts generating for all pixels
should satisfy the three assumptions. For the first assumption,
we can consider the bias field in one context is uniform if the
context size is as small as possible. Because the pixels belong
to the same tissue are homogeneity, so they are extremely
similar, which make assumption 3 satisfy. From the second
assumption, it is used to generate the contexts based on
the tissue distributing disciplinarian in anatomy that GM is
always distributing between WM and CSF . We can ensure



that the third tissue must exist in the context if the WM and
CSF are confirmed existing together in a context and there
are considerable pixels.

As we discussed above, To satisfy the above assumptions,
the context size should be properly decided. On the principle
that all the three tissues exist together in the context we use
shannon entropy as a homogeneity measurement to optimize
the size of the clustering context. Our method relies on
the assumptionsentropy value grows with increasing of the
intensity of bias field [13]. On this assumption, entropy
is a good measure of the field smoothness which can be
minimized for each context in order to overcome the bias
problem. All the contexts can be generated adaptively in this
method and the membership degree calculated by FCM in
each context will be more reliable.

We can conclude our method as follows:
1. A global threshold segmentation algorithm is used to

obtain the WM image and CSF image of the processing MRI.
2. Based on the distributing disciplinarian in anatomy that

GM is always between WM and CSF in brain, the two
images obtained from the first step can be regarded as the
reference to judge whether the two matters exist together in
a clustering context, and to confirm that all the three tissues
exist together.

3. The Shannon entropy is used as a homogeneity mea-
surement to optimize the size of the clustering context.

4. According to the suitable of FCM algorithm for the un-
certainty and fuzziness of gray-scale image, FCM algorithm
is independently performed in each context to calculate the
degree of membership of a pixel to each tissue class.

A. Context generation method

To make sure each context contains three tissues, we
need to obtain white matter image (Iwm) and cerebrospinal
fluid image (Icsf ) of the processing MRI by an initial
segmentation algorithm. For not requiring high accuracy
of the segmentation result, the global threshold method is
selected as our initial segmentation.

We need calculate the minimal circumscribed rectangle
of the brain in the image and select this part as the pro-
cessing image at first, which make each context contain
tissue pixels as many as possible and ensure the accurate
segmentation result of each context. And then the image is
divided into eight average contexts that four rows and two
columns. Because the image is approximate symmetry in the
vertical orientation and the sizes of different images (except
background) are diverse, so two columns and four rows are
more reasonable and widely applicable. Finally the global
threshold segmentation algorithm is used in each context
respectively to obtain the final three tissue images.

The results of initial segmentation are shown in Fig.1
(a) shows a simulated MR image that corrupted with 40%
intensity inhomogeneities. (b) is the result of initial segmen-
tation. A-D are Four contexts under consideration located
on different areas and the magnified drawing of regions A-
D are shown in Fig.2 Form region A and C we can see if
the context contain two tissues WM and CSF, it must also

Fig. 1. (a)simulated MR image (b)initial segmentation.

(a) (b) (c) (d)

Fig. 2. (a-d)are the magnified drawing of regions A-D in Fig.1(b)

contain GM. Otherwise, as region B and D, GM and WM
or GM and CSF exist together, we can not confirm the third
tissue must exist.

TABLE I
SIMILARITY INDEX FROM INITIAL SEGMENTATION

ρcsf ρwm ρgm

0% 0.9110 0.9605 0.9395
20% 0.9120 0.9594 0.9385
40% 0.9117 0.9547 0.9347

By comparing with the ”ground truth”, the similarity
indices of the initial segmentation for image with 0%, 20%,
and 40% intensity inhomogeneities are listed in Table I.
The similarity index value of each tissue is greater than
90%.Therefore, we can judge whether the WM and CSF exist
together in a context by image Iwm and Icsf , and to confirm
that whether all the three tissues exist together.

Using the information from Iwm and Icsf , the ratio of the
CSF and WM in the whole image can be calculated as:

rcsf =
Ncsf

M ×N
(8)

rwm =
Nwm

M ×N
(9)

where Ncsf and Nwm are the numbers of CSF and WM
respectively. M and N are the width and height of the image.

The steps of the contexts generating can be described as
follows:

Step 1: Generation of the first context.
Firstly, define a rectangular window with an initial size

of m × n, the point Icsf (1, 1) is the upper left corner of
the rectangular. crcsf is the ratio of CSF in the rectangular,
which is defined as equation (10). In order to guarantee the
quantity of CSF in the context, the values of m and n are
increased until crcsf ≥ rcsf .

Secondly, in the image Iwm, using the updated values of
m and n as the size of the rectangular, the point Iwm(1, 1)



is the upper left corner of the rectangular.crwm is the ratio
of WM in the rectangular, which is defined as equation (11).
So increasing the values of m and n until crwm ≥ rwm to
ensure WM exists in this context and there are considerable
pixels.

crcsf =
CNcsf

m× n
(10)

crwm =
CNwm

m× n
(11)

where CNcsf and CNwm are the pixel number of CSF and
WM in the context.

Thirdly, the entropy of this rectangular is calculated. Then
the size of this rectangular is enlarged with increasing the
value of m and n constantly and calculates the entropy of
each one, from these contexts we choice the one has the
minimum entropy value as the first context, its size is the
updated values of m and n.

Step 2: Context optimization based on entropy-
minimization algorithm

Firstly, with the value of m fixedness, initialize the value
of n. The point Icsf(1,n+1) and Iwm(1,n+1) are regarded as
the upper left corner of the rectangular, respectively. Do the
same as mentioned in step 1 to calculate the size and the
position of the next context.

Secondly, keeping the value of m stable, the size of
rectangular is enlarged constantly with increasing the value
of n , and several rectangles can be obtained by this way.
From these rectangles we select the one with the minimum
entropy value as a context. Repeating this operation until all
the columns in the m rows are contained in the context. The
last context in the m rows should be incorporated with the
above context if it contains few numbers of WM and CSF,
which is necessary to guarantee the quantity of WM and CSF
in each context.

The above two steps were repeated until the contexts
required for all pixels are generated.

B. Local Segmentation

After we get all contexts according to the method men-
tioned above, FCM algorithm perform the classification
independently in each context to calculate the degree of
membership of a pixel to each tissue class.

FCM algorithm can be summarized as follows: Initialize
class centroid values,{υk}c

k=1. And beginning from the sec-
ond context, use the clustering results of {υk}c

k=1 from the
previously generated context as the initial cluster centroids.

Update the membership matrix with (6).
Update the cluster centroids with (7).
As we know, initialization is very important for mean-

ingful clustering results and reduction of computation time.
The centroids in two neighboring contexts are approximately
equivalent Because of the two neighboring contexts are quite
similar, so we using the clustering results from the previous
context as the initial values in current context, which can
reduce the computational time and improve the accuracy.
After FCM is performed in all the contexts, maximum

membership principle is used to obtain the final segmentation
result.

IV. EXPERIMENTS

The proposed algorithm was implemented in Matlab on
a PC with Intel Pentium 4 2.66GHz processor and 512M
RAM. It was tested on simulated MRI images obtained from
the Brain Web Simulated Brain Database at the McConnell
Brain Imaging Center of the Montreal Neurological Institute
(MNI), McConnell University.

Four different indices (false positive ratio rfp, false neg-
ative ratio rfn ,similarity index ρ [14] and misclassification
error MCR) are exploited for each of three brain tissues as
quantitative measures to validate the accuracy and reliability
of our method.

(a) (b) (c)

(d) (e)

Fig. 3. (a) simulated MRI. (b)FCM segmentation. (c)MCFC segmenta-
tion.(d)our segmentation (e)The ground truth.

TABLE II
THREE INDICES FROM SIMULATED DATA.

method indices CSF GM WM

FCM
rfp 16.68 9.14 11.52
rfn 12.56 13.17 7.39
ρ 85.68 88.62 90.73

MCFC
rfp 4.97 3.81 10.67
rfn 2.89 9.62 3.25
ρ 96.11 93.08 93.29

our method
rfp 5.31 1.50 5.53
rfn 2.14 5.59 1.67
ρ 96.33 96.38 96.97

The brain image in Fig.3 (a) is a slice of the simulated 3-D
volume with 40 %intensity inhomogeneity. The segmentation
results of the standard FCM, MCFC are shown in (b) and (c)
respectively. Using our proposed algorithm, the segmentation
result is shown in Fig.3 (d). The ”ground truth” of Fig.3 (a)
is shown in (e). From the segmentation results in Fig.3, we
can visually see that our method is more accurate especially
in the transition area between WM and GM or GM and CSF.
Table II shows the quantitative experimental results.
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Fig. 4. MCR from slices 71 to 130 in the simulated brain image sequence.

TABLE III
THREE INDICES FROM SIMULATED DATA.

bias value indices CSF GM WM

20%bias
rfp 0.0402 0.0095 0.0485
rfn 0.0201 0.0573 0.0024
ρ 0.9702 0.9657 0.9752

40%bias
rfp 0.0431 0.0144 0.0508
rfn 0.0214 0.0603 0.0066
ρ 0.9681 0.9617 0.9720

To illustrate precise and veracity of our method,we do
experiment on sixty images from slice 71 to 130 in the
simulated brain image sequence that corrupted by 20% and
40% intensity inhomogeneities respectively. We also apply
standard FCM and our proposed method to the sixty images
for comparison. The MCR are shown in Fig.4. It clearly
demonstrates that our method has a better performance than
FCM at the different bias field level.The average validation
result:false positive ratio rfp, false negative ratio rfn, and
similarity index ρ of the sixty images are shown in Table
III.From Table III, we can find that Though the image are
corrupted by 40% intensity inhomogeneities, the similarity
indices of all the tissues are still larger than 96%,which
indicates an excellent agreement between our segmentation
results and the ”ground truth”.

TABLE IV
SIMILARITY INDEX FROM INITIAL SEGMENTATION

20%bias Entropy20%bias 40%bias Entropy20%bias
CSF 97.04 97.47 97.06 97.14
GM 95.53 95.78 95.69 95.77
WM 96.23 96.61 96.01 96.10

From Table IV we can see the effect of entropy opti-
mization to segmentation. The similarity index obtained by
entropy optimization is higher than validation result without
optimization. Fig.5 shows the result of context generation is
usually different for the same MRI slice corrupted with dif-
ferent level bias field. We could see the proposed algorithm
will get more contexts for the image with greater migration.
However on the premise of ensuring assumption 1 and 2
satisfaction, our method make the number of contexts be
minimum as much as possible which improve the ability

(a) (b) (c) (d)

Fig. 5. (a,b) the context generation on the simulate brain slices with 20%
bias field. (c,d) the corresponding results with 40% bias field.

of overcoming intensity inhomogeneities as well as the
operation speed.

V. CONCLUSIONS

In this paper, we proposed a theoretically simple and prac-
tically effective approach to automatic tissue classification
This algorithm can satisfy the assumptions well, so reliability
of clustering results in the context can be guaranteed. The
algorithm has been applied to the segmentation of MR brain
structures with intensity heterogeneities. And the computa-
tional time of our proposed method is much smaller than
other algorithms.
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