
  

  

Abstract— In this paper, we present an improved 

automated system for classification of pathological image 

data of renal cell carcinoma. The task of analyzing tissue 

biopsies, generally performed manually by expert 

pathologists, is extremely challenging due to the 

variability in the tissue morphology, the preparation of 

tissue specimen, and the image acquisition process. Due 

to the complexity of this task and heterogeneity of patient 

tissue, this process suffers from inter-observer and intra-

observer variability. In continuation of our previous 

work, which proposed a knowledge-based automated 

system, we observe that real life clinical biopsy images 

which contain necrotic regions and glands significantly 

degrade the classification process. Following the 

pathologist’s technique of focusing on selected region of 

interest (ROI), we propose a simple ROI selection 

process which automatically rejects the glands and 

necrotic regions thereby improving the classification 

accuracy.  We were able to improve the classification 

accuracy from 90% to 95% on a significantly 

heterogeneous image data set using our technique.  

I. INTRODUCTION 

Renal Cell Carcinoma (RCC) is the most common type of 

kidney cancer [1, 2]. It accounts for 90% of all kidney 

cancer. Every year, about 32,000 people in the United States 

are diagnosed with renal cell carcinoma. Like almost all 

cancers, renal cell cancer is most likely to be successfully 

treated if detected early.  RCC includes several 

histopathological subtypes, defined by the World Health 

Organization (WHO) classification system [3]; the most 

common subtypes are Clear Cell RCC (83%), Papillary RCC 

(11%) and Chromophobe RCC (2%).  Renal Oncocytoma is 

a benign renal epithelial tumor with several clinical and 

morphologic features in common with chromophobe RCC 
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(4%). Different subtypes of RCC are treated differently by 

clinicians. Thus, identification of RCC subtypes is extremely 

important for renal cancer treatment. However, manual 

classification is time consuming and prone to user 

subjectivity. 

Computer aided diagnostic (CAD) tools are gaining 

popularity since they reduce inter-user and intra-user 

variability and assist the pathologist in making a quick 

diagnosis. In [4], authors have concluded that CAD can be 

used to improve radiologists' performance in breast cancer 

diagnosis.  An important requirement for these diagnostic 

tools is to provide accurate and consistent results for 

biological images with varying features, illumination and 

staining differences. We have designed an automated 

classification algorithm that classifies the renal cell 

carcinoma images into four subtypes with minimal user 

interaction. In this work, we show that automated region 

selection, when applied before classification, can improve 

classification accuracy to a great extent with reduced 

computation time. The classification accuracy achieved with 

our improved method is 95%, thus showing the potential for 

future clinical use.  

II. BACKGROUND 

There have been several research endeavors for developing 

an automated diagnosis system, where the main focus is on 

separating the cancerous images from the normal images. For 

example, in [5], mathematical morphology has been used to 

classify the images as cancerous or non-cancerous.  In [6], 

multi-spectral analysis has been used to classify the prostate 

biopsy images as containing stroma, benign prostatic 

hyperplasia, prostatic intraepithelial neoplasia and prostatic 

carcinoma. Features such as entropy, contrast, and angular 

second moment were derived using a co-occurrence matrix 

in [7].  These features based on texture analysis were used to 

classify the colon mucosa into cancerous and non-cancerous 

categories.  In [8], an improvement in the classification 

accuracy of colon cancer is reported by using a fractal 

dimension along with conventional texture analysis. Another 

work [9] pertains to the development of a machine vision 

system using morphological and texture characteristics for 

quantifying tissue composition to aid in automatic 

identification of prostate lesions.  The classification of 

prostate tissue was based on tissue morphological 

characteristics assuming larger lumen areas for normal 

tissue.  Statistics from the gray level co-occurrence matrix 

(GLCM) have been used before for classification. For 

instance, texture classification based on a combination of 

wavelet statistical features and co-occurrence features has 

been reported in [10]. In other work [11], texture features are 
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calculated on the expansion wavelet coefficients of the 

images. In [12], the GLCM has been used for the 

classification of cell nuclei in Pap smear images. In this 

work, we focus on nuclear segmentation and derive features 

for each segmented nuclei with several angle and distance 

measures. 

All the above mentioned works have mainly focused on 

binary classification of normal tissue from the cancerous 

regions; however, there are no significant efforts on cancer 

subtype classification. Our previous works [13, 14] 

attempted computer aided automatic RCC subtype 

classification.  In [13], we used the knowledge-based RCC 

features to obtain high classification accuracy using our test 

data set which was selected by the pathologist as a good 

representative of each RCC subtype.  However, in practice 

clinical image data is highly heterogeneous with significant 

variations in the images of each RCC subtype. Our algorithm 

in [13] gives reduced classification accuracy when used for 

significantly heterogeneous images within each subtype 

class. In addition to the heterogeneity, the tissue samples also 

contained necrotic regions which contribute to the reduced 

accuracy. In [14], we designed a new methodology to 

overcome the reduced accuracy in the presence of 

heterogeneous data. We extracted features using a 

combination of morphological analysis, wavelet analysis and 

texture analysis. We achieved classification accuracy of 

about 90% with a simple Bayesian classifier. 

In our present work, we augment our knowledge-based 

classification system with automatic region of interest (ROI) 

selection from heterogeneous images. We have achieved an 

improvement in classification accuracy. In [14], the accuracy 

was 90% with features selected from textural, morphological 

and wavelet analysis.  In this work, we report an accuracy of 

95% with only four features and no wavelet analysis. Thus 

we have achieved higher accuracy with reduced computation 

time. Our work clearly demonstrates the importance of 

intelligent ROI selection to reduce computation time and 

increase classification accuracy.  

III. METHODOLOGY 

The image dataset consists of standard photo micrographs of 

hematoxylin & eosin (H & E) stained biopsy tissue sections 

as shown in Figure 1. A flowchart of the overall 

methodology is shown in Figure 2. We first perform color 

segmentation for each image and then convert this image into 

four-level grayscale images (one level for each color class). 

Automatic ROI segmentation of these images is performed to 

reject necrotic regions. The ROI masks and the grayscale 

images were used to compute statistical features.  These 

features were then used to train the Bayesian classifier and 

classification of the unknown images into subtypes of the 

RCC. We will describe the detailed processing steps in the 

remainder of this section. 

A. Image Acquisition 

The tissue samples used in this study were obtained from 

renal tumors resected by total nephrectomy. Standard 

pathological procedures were followed to fix, process, 

section and stain the tissue. Microscopic sections were sliced 

after embedding the histological samples in paraffin. The 

sliced sections were then stained with hematoxylin & eosin.  

All tumors were diagnosed by board-certified anatomic 

pathologists using WHO histopathological criteria [3]. 

Representative photomicrographs were obtained at 200x 

 

 
 

Fig. 1.  Clockwise from top-left: Clear cell (CC), Chromophobe 

(CHR), Papillary (PAP), Oncocytoma (ONC). 

 
 

 

 
 

 

 

 

 

 

  

 

 

                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Flowchart of the overall methodology. 
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total magnification and 1200 x 1600 pixels resolution for 

analysis. 

For our study, we used a set of 48 images with 12 samples 

from each subclass; clear cell RCC (CC), papillary RCC 

(PAP), Chromophobe RCC (CHR), and renal Oncocytoma 

(ONC). A sample of representative images from each 

subclass is shown in Figure 1.  The images were selected 

with a special emphasis on heterogeneity within each image 

which can be seen in the Figure 1.  

B. Image Segmentation 

The H&E staining in presence of red blood cells and the 

background reflects four distinct colors in the acquired 

images. The color and intensity of the images, however 

varies significantly based on the variations in sample 

preparation and the image acquisition process. Therefore, to 

be consistent with tissue staining, we first segmented the 

images into four-level grayscale images each level 

representing a mask for one category of objects. The four 

categories are nuclei, gland, cytoplasm and red blood cells. 

A large intra-sample color and intensity variation 

necessitates some intelligent processing to segment the RGB 

images into quantized grayscale images representing region 

masks.  For this purposes, we used K-means clustering, a 

widely used algorithm for multispectral data [15]. K-Means 

clustering defines the cluster of colored pixels by reducing 

the objective function, given by 
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where xj is a pixel belonging to the cluster Si with cluster 

mean Ci.  For our RCC subtype images we start with the 

fixed initial values of the staining colors as the means of the 

k=4 clusters. The k-means algorithm adapts to the variation 

in the images by shifting the cluster means and updating the 

pixel assignments. Figure 3 illustrates the results of this 

segmentation. 

C. Automated ROI Selection 

RCC tissue images generally focus on the viable malignant 

regions of the tissue.  However, the malignant epithelial cells 

are sometimes integrated with necrotic or non-malignant 

regions (e.g., cystic spaces, spaces between papillary 

structures, vascular structures, fibrosis, or benign kidney) in 

such a way that it is not possible to capture only viable 

carcinoma. Presence of necrotic or non-malignant areas 

significantly perturbs the image statistics, which 

subsequently results in classification errors. Several of these 

confounding factors are devoid of nuclei including cystic 

spaces, spaces between papillary structures, vascular or 

tubular lumina, necrosis or sectioning artifacts. Therefore, 

we design a set of morphological operations that focuses the 

analysis on regions of high nuclear density and removes the 

necrotic tissue regions in the images. 

The sequence of operations performed to extract the ROI 

is as follows: 

 

a) Obtain nuclear mask N from gray level segmentation. 

b) Perform image opening and closing with a one pixel 

structuring element to smooth out the nuclear mask by 

removing surface spikes. 

 SNN •= (closing operation)         (2) 

SNN o= (opening operation)      (3) 

 

 

 

Fig. 3.  K-Means segmentation 1) original image 2) color segmented 

pseudo image 3) gray level segmented image. 
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Fig. 4:  Left � Right: Top� Bottom: (A) Original image (B) nuclei 

mask. (C) Area mask after closing operation. (D) Mask after opening. (E) 

Final mask overlaid original image showing ROI segmentation.  

 



  

c) Estimate the average nuclei diameter, Ravg, for the given 

image. 

d) If X is the average inter-nuclear distance in the cancerous 

region of the image, then the final disk size to obtain relevant 

ROI is given by: 

( ) XRrD avg ×=                      (4)   

e) Perform one step opening and closing to extract the ROI.  

( )rDNN •=                               (5) 

( )rDNN o=                               (6) 

Our ROI selection differs from a general pre-processing step 

since we are trying to select nuclei rich regions 

(corresponding to cancerous areas). The algorithm 

encapsulates this a priori intention by using the average 

nuclei diameter and inter-nuclear distance in ROI selection 

steps described above. The morphological processing is 

intentionally kept simple to keep the computational cost low 

which may not give precise region segmentation but it is still 

capable of rejecting large open spaces and necrotic regions 

in the tissue. Figure 4 shows some results obtained in the 

process of ROI segmentation.  

D. Feature Extraction 

After the ROI segmentation of high nuclear density areas, we 

use the four-level grayscale images for feature extraction. 

Our feature extraction algorithm is based on gray level co-

occurrence matrix (GLCM), however, unlike [12], we 

compute GLCM for the selected ROIs only. The GLCM 

captures the frequency that a gray-level value occurs 

adjacent to another gray-level value [16]. This kind of 

information is not presented by histograms. As we already 

segmented the images into four gray level intensities, our 

GLCM is a 4x4 matrix. One GLCM matrix of size 4x4 

represents one spatial relation (e.g horizontal) between the 

intensities of the image. Therefore we calculated four GLCM 

matrices to cover all the four spatial relations (horizontal, 

vertical, diagonal at the angle of 45 degree and diagonal at -

45 degrees) between the intensities from the image and take 

the average of these four to present the overall spatial 

relation of the gray level intensities within the image. We use 

this average GLCM matrix to calculate the statistics such as 

contrast, correlation, energy, homogeneity and entropy. The 

correlation between neighboring pixels is given by 
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where µ is the mean and σ is the variance [16]. Energy, 

also known as uniformity or the angular second moment, 

provides the sum of squared elements in the GLCM and is 

given as 
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where Pi,j is the probability of the i
th

 grayscale value 

occurring next to the j
th

 grayscale value in one of the four 

spatial relations. Entropy corresponding to the randomness 

between the elements of GLCM is given by 
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We represent four gray levels with numeric labels 1 to 4, 

corresponding to nuclei, cytoplasm, red blood cells and 

glands, respectively. We experimented with several different 

associations between morphological features using different 

GLCM elements such as GLCM(1,2), GLCM(2,3) etc. 

Among all the GLCM elements GLCM (2,4) provides the 

best classification results showing that the association 

between cytoplasmic staining and glands is an important 

feature for classification. In Table 1, the numeric values 

TABLE I 

FEATURES SELECTED FOR CLASSIFICATION 

 CC CHR ONC PAP 

GLCM(2,4) 49.5000 

±13.912 

41.916 

±3.175 

40.583 

±22.24 

36.7500 

±11.794 

Correlation 
0.7491 

±0.0169 

0.7405 

±0.046 

0.7376 

±0.063 

0.8376 

±0.033 

Energy 
0.2786 

±0.0382 

0.4178 

±0.068 

0.3599 

±0.092 

0.2569 

±0.015 

Entropy 
1.5526 

±0.2032 

1.9034 

±0.193 

2.0968 

± .3211 

2.3124 

±0.065 

 

Fig. 5: Plot, showing distribution of subtypes using only three 

features (top) using the complete image, (bottom) using the 

masked region. 



  

represent the mean value of the calculated statistic 

plus/minus the standard deviation.   

Classification:  We used the features (in Table I) extracted 

in the last step for classification into subtypes with a simple 

multi-class Bayesian classifier assuming Gaussian 

distribution for the extracted features. To estimate the 

accuracy of our system we used the leave-one-out cross 

validation resulting in about 95% (45/48) accuracy. 

IV. RESULTS AND CONCLUSION 

We have obtained about 95% classification accuracy for 

H&E stained RCC images with the features in Table I. 

Figure 5 is the scatter plot of these features showing the 

separation between the subtypes. We achieved 90% accuracy 

in our previous work [14] when the whole image was 

considered for classification and features from wavelet 

analysis were also used. By segmenting the desired ROIs, the 

classification accuracy improved to 95% with only four 

features. Thus, we have achieved faster classification with 

improved accuracy since the number of features is reduced 

and computation for wavelet analysis is omitted. Figure 6 

provides an example CC image that was misclassified as 

ONC before ROI segmentation and correctly classified after 

ROI segmentation.  Such accurate classification of difficult 

heterogeneous images was not achievable in our previous 

works [13, 14]. Thus, it can be concluded that using only 

relevant regions for classification results in better 

classification accuracy.  This approach shows potential for 

clinical impact because it incorporates the pathologist’s 

method of focusing on a region of interest. 

Figure 7 shows an example of misclassified and correctly 

classified Chromophobe images.  The misclassified image 

has several glands which are masked out by our ROI 

selection. Thus, the cancerous area available for 

classification is much less as compared to the correctly 

classified images. Also, this small area resembles the 

selected region in Oncocytoma image resulting in 

misclassification of Chromophobe into Oncocytoma.  

V. DISCUSSION 

With our improved classification system, we are highly 

motivated to apply this system for classification of other 

cancer types. To further improve the accuracy of our 

algorithm, we are exploring techniques for better ROI 

segmentation. For example, we can remove other irrelevant 

features such as necrotic and interstitial regions. However, 

some textural information such as distinct light yellow 

longitudinal streaks in papillary RCC (representing the 

spaces between malignant papillary projections), as shown in 

Figure 8, are significant for feature extraction and 

subsequent classification. This requirement of preserving 

distinct subtype features while still omitting unnecessary 

regions for faster and accurate classification, rules out the 

possibility of using cancer region classification algorithms 

such as described in [5]. These algorithms will isolate the 

cancerous areas only and thus we will not have enough 

image information to generate reliable feature statistics. For 

example, we will lose the papillary streaks to the non-cancer 

region and will not be able to distinguish papillary subtype 

from other subtypes. This makes the design of ROI selection 

process a non-trivial task for RCC classification purposes.  

Given these challenges, we are further improving our system 

to perform better ROI segmentation as well as target other 

unwanted tissue structures, for instance strands of connective 

tissues that could also be eliminated for even more accurate 

classification results. We also plan to generate classification 

results using other classifiers such as support vector 

machines. The outcome of our algorithm depends on the 

heterogeneity of images and better results can be obtained if 

dataset excludes difficult heterogeneous images. However, 

our objective for this work is to achieve as much accuracy as 

possible with the heterogeneous datasets since heterogeneity 

cannot be overruled in biological images. It is quite clear that 

the high classification accuracy is obtained due to intelligent 

region selection prior to classification. We used leave one 

out cross validation method in our previous work [14], 

however the accuracy was not as high as in present work.  

 
 

Fig. 6: (Left) CC image misclassified observing complete image. 

(Right) Segmented ROI classifies image correctly. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 7: (Top) misclassified CH image (Bottom left) correctly 

classified  CH image (Bottom Right) Correctly classified 

Oncocytoma image. 

 



  

VI. FUTURE TRENDS 

Computer aided diagnosis is gaining acceptance by the 

clinical community since it provides faster diagnosis with 

reduced subjectivity. Works such as in [17-20], have clearly 

demonstrated the need for digital diagnosis. In [17] and [18], 

diagnostic disagreement among pathologists for melanoma is 

studied. To decrease the diagnosis variability, the authors 

have suggested the use of panels of pathologists to study 

individual specimens.  However, access to a panel of 

pathologists may not be feasible especially in developing and 

third world countries. Computer aided diagnosis with added 

pathologist opinion and sharing of digital results with other 

pathologists when needed will be an important component of 

future medicinal practices.  
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Fig. 8: Papillary image. 


