
 

  

 
Abstract—Dedicated breast Computed Tomography (CT) is an 

emerging new technique for breast cancer imaging. Breast CT 
data can be acquired at a dose level as low as the conventional 
two-view mammography. Since the dose is equally split into 
hundreds of projection views, each projection image contains 
non-ignorable quantum noise. This study is aimed at 
investigating how volume noise removal affects the mass 
detectability in breast CT. A Partial Diffusion Equation (PDE) 
based denoising technique was applied before the reconstruction 
of either a simulated breast volume embedded with a contrast-
detail mass phantom or a real human subject breast CT volume 
embedded with a simulated spherical mass. By applying a 
mathematical observer, it is found that the PDE volume noise 
removal technique improves the mass detectability in breast CT 
in a statistically significant sense.  
 

Index Terms—breast cancer, tomography, noise, breast CT, 
lesion detection, observer study  
 

I. INTRODUCTION 
The advance of flat panel detector technology made it 

possible to develop some three dimensional breast cancer 
imaging techniques, such as breast tomosynthesis [1] and 
dedicated breast CT [2]. Breast tomosynthesis acquires high-
resolution projection images over a limited angle range. Its 
tomographic reconstruction is complicated by incomplete 
sampling and therefore is the focus of many research 
endeavors [3-6]. Intrinsically, reconstructed breast 
tomosynthesis volumes have high within-plane resolution and 
low cross-plane resolution. By contrast, dedicated breast CT 
acquires projection images over the full 360-degree angle 
span; whose tomographic reconstruction is conventional and 
can generate isotropic resolution both within plane and cross-
plane. Due to the practical consideration, the flat-panel 
detector in breast  CT system has lower spatial resolution  than  
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the one used in breast tomosynthesis system. Thus, the 
resolution in the reconstructed volume of breast CT is in-
between the within-plane and cross-plane resolutions of breast 
tomosynthesis volumes.  

 Another image quality metric is noise level. Currently, 
dedicated breast CT techniques use the same dose as the one 
of conventional two-view mammography [7], which is split 
among hundreds of projection images. Due to the Poisson 
process of the projection views, the quantum noise is higher 
than the noise on mammograms. These noisy projection views 
are then reconstructed by using a reconstruction algorithm. 
The noise level in the reconstructed volume is heavily 
influenced by the noisiest projection view. In a separate study 
[8], we found that applying a noise removal module before 
reconstruction is much better than applying after 
reconstruction.  

The motivation of the work presented in this paper is to 
investigate the effectiveness of a noise removal module in 
terms of mass detectability in breast CT. Consistent with our 
previous paper [8], we will use the Partial Diffusion Equation 
(PDE) based denoising technique applied on the line integral 
projection images. 

II. METHODS 

A. Dedicated Breast CT System 
A dedicated breast CT system is set up differently from the 

conventional CT system. Rather than illuminating the whole 
torso, it only illuminates a breast of the patient.  Fig. 1 is an 
illustration of the major components of a typical breast CT 
system. The lead-shielded bed on which the patient lies prone 
was not shown in this illustration. The x-ray tube and the 
vertically standing flat panel detector rotate concurrently for a 
span of 360 degrees.  

B. Datasets and Mass Simulation 
There are two types of breast CT data used in this study: the 
ones acquired virtually for a simulated breast with simulated 
contrast detail phantoms in the middle of the breast;   and the 
human-subject breast CT data from Dr. Boone’s lab at 
University of California Davis.   

Fig. 2 shows the cross-section of the simulated breast with 
contrast detail phantoms. Each of the five 4x4 arrays in 
contrast detail phantoms has masses with sizes varying 
vertically (6, 5, 4 and 3 mm) and contrasts varying 
horizontally (15%, 10%, 5% and 3%). Square regions 
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containing all 80 masses form the 2D ROIs for numerical 
observer study. 

 

Fig. 1.  In a dedicated breast CT system, the x-ray tube and flat-panel 
detector rotate simultaneously around the breast. 
 

As the 20 human subject datasets used for the breast mass 
detectability study were prospectively collected cases, the 
ground truth of their volumes is unknown. In present study, 
we will assume that there is no lesion in the volumes. And all 
the lesions of interest will be simulated.  

The procedure of simulating a mass in human subject breast 
CT data is as follows: 

Step1: For a given human subject dataset, the reconstructed 
volume is used as the reference. The locations of 10 masses 
that will be embedded into the volume are randomly chosen. 

Step2: Spherical masses with fixed size and contrast are put 
at the locations selected in Step 1, and projected onto a virtual 
100% Detective Quantum Efficiency (DQE) detector using a 
virtual monochromatic cone-beam projector, which has the 
same system geometry, projection angles and reconstruction 
parameters as the individual human subject dataset. These 
projection images of masses will be added to the original 
projection images of human subjects to get the synthetic 
projection sets. 

Step3: The synthetic projection sets either go through a 
denoising module followed by filtered back projection (FBP) 
reconstruction or directly go for FBP reconstruction. 

Step4: The three-dimensional region of interest (ROIs) can 
then be retrieved from the reconstructed volumes. In the 
present study, instead of using 3D ROIs, only coronal region 
of interest containing the center of masses (i.e., 2D ROIs) are 
retrieved for numerical observer study. 

Using the 80 ROIs (each of which contains a mass in the 
contrast-detail phantom) in the simulated breast volume, a 
PDE denoising technique was optimized. This technique was 
then applied to the human subject ROI dataset, which is 
comprised of a total of 400 ROIs, 200 with and 200 without 
simulated masses. 

C. Volume Noise Removal 
The PDEtomo technique [8] for volume noise removal in 

breast CT is used in this study. Details of the technique can be 
found in the reference. A brief description of the technique is 
as follows.  
 

 
 

Fig. 2.  Coronal view of a simulated breast embedded with a contrast-
detail mass phantom. 

 
The image to be denoised is denoted as I. A nonlinear partial 

diffusion equation on I will be:  
∂I
∂t

= ∇ ⋅ (p(∇(Gσ ⊗ I) )∇I) ,                           ( 1 ) 

where ∇I  is the gradient of the image I and ∇ ⋅ (*) is the 
divergence operator on image I over the spatial variables. By 
carefully selecting the appropriate p(*), the diffusivity 
function, the image can be processed in such a way that not 
only noise is reduced but also the details in the image will be 
preserved. To bound the gradient values in the presence of 
noise, a Gaussian kernel Gσ with the standard deviation of 
sigma σ is convoluted with the image before gradients are 
computed as Catte et al  [9] suggested.  

In this study, we chose a diffusivity function with the form 
of 

p(d) = e
−

d 2

δ 2 ,                                   ( 2 ) 

where delta δ  is a user-specified parameter. The parameter δ  
acts like a cut-off value; image regions with gradient norm 
below δ  will have more noise removed while regions with a 
higher gradient norm will stay sharp. We used a spatially 
adaptive type of the parameter δ as: 

δij = δ0 ⋅
1

1
M

elc

c∈N ( i, j )
∑

,                        ( 3 ) 

where M equals to 4, and N (i, j) is the four closest neighbors 
around pixel (i, j) of image I. 

Equation (1) can be discretized by the finite difference 
approach using the first-order neighborhood system. Each 
pixel has four neighbors: the north, south, west and east 
neighbor pixels. Assuming Δx = Δy =1 in the two-
dimensional case, the discretized version of (1) is  
I(i, j )

< t +1> − I( i, j )
< t>

Δt
= p(i−1, j ) ⋅ ∇( i−1, j )I

< t> + p(i+1, j ) ⋅ ∇( i+1, j )I
< t>

+ p( i, j−1) ⋅ ∇(i, j−1)I
< t> + p( i, j +1) ⋅ ∇(i, j +1)I

< t>

 , ( 4 ) 



 

where <t> and <t+1> represent the iteration step t and t+1 
respectively; Δt  is the discretized time step; p(.,.)’s are 
diffusivity function values at the neighboring pixels of 
location (i,j); and ∇(.,.)I is a notation for the difference 

between I(⋅,⋅)and I(i, j ). The parameters used in this study are: 
Δt=0.1, σ=1, δ0=0.03, and the number of iterations = 10. 

D. Numerical Observers 
D.1. Ideal Observer 
The task of an observer is to detect these masses from 

background tissues. It can also be formulated as the following 
hypothesis testing: 

H0 : x = n
H1 : x = n + s  ,                 ( 5 ) 

where n and s represent respectively the noise and the signal 
(in our application, it refers to the existence of a mass). 

The null hypothesis represents the mass absent case, 
whereas the alternative hypothesis represents the mass present 
case. If treated as signal known exactly (SKE) case, according 
to signal detection theory [10], the optimal detector is a 
likelihood ratio detector. Assuming the background noise n 
follows a Gaussian distribution with a covariance matrix of Σ, 
the log likelihood ratio has the following form: 

xsx T 1))(ln( −Σ=λ .                ( 6 ) 

If the background noise follows independent and identical 
distributed (I.I.D.) Gaussian, i.e., the covariance matrix Σ is an 
identity matrix, then (6) can be further simplified to: 

2/))(ln( σλ xsx T= .                           ( 7 ) 

This is the ideal observer. Usually real breast tissue 
background does not satisfy the I.I.D. condition, so the ideal 
observer shown in (7) will perform sub-optimally on the real 
breast tissue background case. 

D.2. Laguerre-Gauss Channelized Hotelling Observer (LG-
CHO)  

When the covariance matrix Σ is not an identity matrix, the 
likelihood ratio observer shown in (6) is equivalent to a 
Hotelling observer [11]. The estimation of the covariance 
matrix Σ requires a large number of training cases, which is 
presently not available in breast CT. Alternatively, Laguerre-
Gauss channelized Hotelling observer (LG-CHO) [11, 12] can 
be used for this purpose.  

The nth order Laguerre function has the following form: 

Ln (x) = (−1)m n
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m= 0

n

∑ xm

m!
.                    ( 8 ) 

The LG-CHO has nth order template with the form of: 

LGn (r) = exp(− πr2

a2 ) ⋅ Lm (2πr2

a2 ) ,             ( 9 ) 

where a is a free parameter proportional to the standard 
deviation of the Gaussian kernel through 
a = 2πσ .                                ( 10 ) 

D.3. CNR Observer 
Traditionally, one would like to use Rose model of statistical 

detection for a simple lesion detectability study based on x-ray 
projection images. However Rose model does not directly 
apply to the breast CT reconstructed slices in this study since 
the physical measurement on these reconstructed slices is 
linear attenuation coefficients. Instead, the contrast to noise 
ratio (CNR) for each ROI is calculated and used as the 
decision variable. Given the uncertainties associated with any 
model observer study, it is desirable to be able to compare all 
results against such a simple, well-understood technique. 

E. ROC Analysis 
The receiver operating characteristic (ROC) analysis is a 

comprehensive tool for performance measure of the numerical 
observers. Of the two axes on ROC plots, the horizontal axis 
represents one minus the specificity, or the False Positive 
Fraction (FPF), which equals to the ratio of the number of 
false positive responses to the number of actual negative 
cases. The vertical axis denotes sensitivity, or the True 
Positive Fraction (TPF), which equals to the ratio of number 
of true positive responses to the number of actual true cases. 
The FPF and the TPF both range from 0 to 1. A metric of 
ROC curve is the area under the curve (AUC). The larger 
AUC value, the better the performance is, while AUC of 0.5 
corresponds to random guessing. The area can also be 
calculated via semi-parametric fitting resulting in an area 
index denoted as Az [13]. 

III. RESULTS 
Results are presented hereafter for two cases: contrast detail 

phantoms in simulated breast CT background, and masses 
with fixed size and contrast in human subject background. 
First we present in Fig. 3 and Fig. 4 two sample ROIs for 
simulated masses embedded in the anatomical background. 
The top row showed the ROIs derived from the original 
dataset, whereas the bottom row showed the ROIs from the 
processed dataset with volume noise removal. The left column 
showed the ROIs without masses, while the right column 
showed the ROIs containing the simulated masses following 
Step1 to Step 4 in Methods section B.  

A. Contrast Detail Phantom Results  
CNR observer result is shown in Fig. 5 for the contrast detail 

phantom embedded in a uniform background.  
In Fig. 5 (a), the histograms of CNR for original and PDE 

processed ROIs with and without simulated masses are 
plotted. It is obvious that PDE processed ROIs with simulated 
masses   have higher CNR values than original ROIs with 
masses.  



 

       (a) Orig; nomass                       (b) Orig; mass 

 
          (c) PDE; nomass                       (d) PDE; mass 

 
 

Fig. 3.  Sample ROIs for simulated lesion of 5 mm in diameter and 3% in 
contrast: Original ROIs in (a) without mass and in (b) with a mass, and, 
PDE denoised ROIs in (c) without mass and in (d) with a mass.   

 
 (a) Orig; nomass               (b) Orig; mass 

 
         (c) PDE; nomass                     (d) PDE; mass 

 
 

Fig. 4.  Sample ROIs for simulated lesion of 4 mm in diameter and 2% in 
contrast: Original ROIs in (a) without mass and in (b) with a mass, and, 
PDE denoised ROIs in (c) without mass and in (d) with a mass.   

 
The Az values were obtained using the software package 
ROCKIT (Charles Metz, University of Chicago). For original   
dataset, the Az   is  0.933  ±  0.020;  and  for   PDE  processed 
 

                                                 (a)   

 
  (b) 

 
Fig. 5.  CNR observer results for contrast detail phantoms embedded in a 
simulated uniform background. CNR histograms for original and PDE 
processed ROI databases are shown in (a) and the corresponding ROC 
curves are shown in (b). The Az value of the PDE processed dataset (0.998 
± 0.005) is statistically higher than the Az value of the original dataset 
(0.933 ± 0.020). The p value is less than 0.01. 
 
dataset, the Az is 0.998 ± 0.005. The corresponding two-tailed 
p value is 0.0009, indicating that Az of PDE processed dataset 
is statistically higher than Az of the original dataset.  The 
ROC curves are shown in Fig. 5 (b). 

B. Human Subject Background Results  
The human subject background ROC analysis based on 

CNR observer is shown in Fig. 6 for simulated masses of 4 
mm and 2%. The histograms of CNR for original and PDE 
processed datasets with and without simulated masses are 
shown in Fig. 6(a). The corresponding ROC curves are plotted 
in Fig. 6(b). The Az value of the PDE processed dataset 
(0.801 ± 0.022) is higher than the Az value of the original 
dataset (0.770 ± 0.023). The p value is less than 0.009, 
indicating that the difference is statistically significant.  



 

Table I: Numerical observer AUC values for simulated masses in real 
anatomical background of breast CT. 

  (a) 

 
(b) 

 

Fig. 6.  CNR observer results for simulated lesions of 4mm and 2% 
embedded in real anatomical backgrounds. CNR histograms for original 
and PDE processed ROI databases are shown in (a) and the 
corresponding ROC curves are shown in (b). The Az value of the PDE 
processed dataset (0.801 ± 0.022) is statistically higher than the Az value 
of the original dataset (0.770 ± 0.023). The p value is less than 0.01. 

 

AUC values of the three types of numerical observers using 
real   anatomical background  from  breast  CT  are  shown  in 
Table I for lesions of 5 mm and 10%, 5 mm and 3%, and 4 
mm and 2%, respectively. For all the cases, the CNR observer 
gives the highest AUC values, followed by 1st order LG 
template, and the ideal observer gives the lowest AUC values. 
For masses with 4 mm diameter and 2% contrast, the ROC 
performance of ideal observer reduces to the chance curve. 

IV. DISCUSSION 
Some studies [14-18] have shown that numerical observers 

can be good candidates for lesion detection tasks.  
As compared to human observers, numerical observers 

posses several advantages, such as higher repeatability, and 
better tolerance of tedious process of observer studies. In this 
study, detectability of simulated masses in both simulated 
breast CT background and the real anatomical background 
were investigated. CNR observers were used in both cases. In 
addition, a SKE ideal observer and nth order LG-CHO 
observers were used for detecting the simulated masses in the 
anatomical background. As expected, SKE ideal observer 
worked sub-optimally whereas LG-CHO worked much better 
than SKE case. The CNR observer as a simple one worked the 
best, as is evident in Table I. 

For the contrast detail phantom in a simulated uniform 
breast background, shown in Fig. 5, the initial AUC based on 
CNR observer is 0.933 ± 0.020. After PDE denoising, the 
AUC improves to 0.998 ± 0.005, which is close to the perfect 
performance. The improvement is statistically significant with 
two-tailed p<0.001. 

With real anatomical backgrounds, masses with a single 
combination of size and contrast was embedded. And the 
resultant ROC curves are a function of both the mass size and 
contrast. It is very easy to detect large masses (e.g., 5 mm in 
diameter and 10% in contrast), whereas the detection task is 
extremely challenging for subtle masses (e.g., 4 mm in 
diameter and 2% in contrast). Using a CNR observer in the 
latter condition showed that PDE denoising provided 
statistically significant improvements in performance, as well 
as higher CNR values and better visual appearance.  

There are some limitations in this study. First, the simulated 
masses are perfect spheres, which are rare in the real situation. 
A more realistic mass simulation may render more advantages 
toward evaluating nonlinear image processing techniques such 
as PDEtomo. Second, the ROIs are two dimensional due to the 
limited number of human subject datasets available. In the 
future, when more human subject datasets are collected, three-
dimensional ROIs can be used instead. Third, in this study, 
individual LG-CHO channels are used for ROC analysis. An 
ensemble LG-CHO is often used with the form: 

Lesion 5mm & 

10% 

5mm & 

3% 

4mm 

& 2% 

Original 0.999 0.877 0.770 CNR 

Observer PDE processed 0.997 0.883 0.801 

Original 0.999 0.850 0.703 LG-CHO 

Observer PDE processed 0.999 0.853 0.702 

Original 0.896 0.690 0.446 Ideal 

Observer PDE processed 0.904 0.700 0.443 



 

w = αmLGm (r)
m= 0

n

∑ ,                           ( 11 ) 

where the parameters (α1, α2, α3,….)  are determined by 
Hotelling Observer.   
 A common problem shared by the observers is the tendency 
to perform too well due to the fixed, single type of lesion. 
Even for the subtlest lesions (masses with 4mm in diameter 
and 2% in contrast in this study) that were virtually impossible 
to see by the human eye, the observers routinely performed 
quite well with ROC areas around 0.7 to 0.8. As such, such 
mathematical observer performances should not be construed 
as what would be typical of clinical performance by 
radiologists. Instead, these studies offer valuable insight in 
terms of comparing one technique against another in a fair (or 
equally unfair) fashion. The best techniques from such a study 
may then be validated in human observer studies in the future. 
In summary, several numerical observers are used to analyze 
the mass detectability in breast CT using simulated uniform 
background and real anatomical background. With simulated 
uniform background and contrast detail phantoms, the PDE 
denoised datasets give the better results than the original 
datasets using CNR observer. The performances are similar 
when LG-CHO templates are used. With real anatomical 
background with fixed size lesion, PDE denoised images have 
higher detectability, higher CNR and better qualitative 
appearance.   

V. CONCLUSION 
This manuscript has presented the ROC study using 

simulated masses and mathematical observers. With either 
simulated background or the real anatomical breast CT 
background, volume noise removal of breast CT dataset 
improves significantly the detectability of masses. 
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