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Abstract—During the analysis of microscopy images, 
researchers locate regions of interest (ROI) and extract relevant 
information within it. Identifying the ROI is mostly done 
manually and subjectively by pathologists. Computer 
algorithms could help in reducing their workload and improve 
reproducibility. In particular, we want to assess the validity of 
the folic acid receptor as a biomarker for head and neck cancer. 
We are only interested in folic acid receptors appearing in 
cancerous tissue.  Therefore, the first step is to segment images 
into cancerous and noncancerous regions. We propose to use a 
spiral intensity profile for segmentation of light microscopy 
images. 

Many algorithms identify objects in an image by considering 
pixel intensity and spatial information separately. Our 
algorithm integrates intensity and spatial information by 
considering the change, or profile, of pixel intensity in a spiral 
fashion.  Using a spiral intensity profile can also perform 
segmentation at different scales from cancer regions to nuclei 
cluster to individual nuclei. We compared our algorithm with 
manually segmented image and obtained a specificity of 83.7% 
and sensitivity of 61.1%.  Spiral intensity profiles can be used as 
a feature to improve other segmentation algorithms. 
Segmentation of cancerous images at different scales allows 
effective quantification of folic acid receptor inside cancerous 
regions, nuclei clusters, or individual cells. 

I. INTRODUCTION 
ancer has become the top killer for Americans under the 
age 85, surpassing heart disease. Although some risk 

factors, or biomarkers, have been identified, a large number 
remain unknown. Additional biomarkers could help 
physicians provide a more accurate cancer prognosis. We are 
interested in investigating whether folic acid receptors can be 
used as a potential biomarker for head and neck cancer.  

Pathologists grade patient tissue slides under  conventional 

light microscope after staining with appropriate chemical 
dyes or immunohistochemistry. Analyses of these tissue 
slides include cancer classification, identification of cancer 
clusters, and assessment of folic acid receptor expression 
intensity. Traditionally, these tasks are performed 
subjectively by trained pathologists. Typical protocols 
require pathologists to look at each slide and record receptor 
expression by assigning a grade. The task is time-consuming 
and tedious. With the aid of high resolution digital 
photography, tissue slides can be stored digitally. Robust 
image analysis algorithms are highly desirable to manage this 
information and reduce the amount of labor along with 
increased reproducibility.  
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 To analyze the folic acid receptor expression from a head 
and neck cancer tissue sample, regions of cancerous cell are 
first identified and segmented. These regions of interests 
(ROIs) are what pathologists consider during the grading 
process. The amount of expression is obtained by judging the 
intensity of the stain within these ROIs. Usually, grading of 
zero to three is assigned based on the total intensity of stain 
expressed within the identified cancer regions. The first step 
for an automated computer algorithm is to segment the ROIs 
from tissue slide images. In this paper, we propose the use of 
a spiral intensity profile to achieve segmentation of ROIs. It 
provides a single feature that integrates spatial and intensity 
information. Our approach allows fully automatic 
hierarchical segmentation at different levels (i.e., cancerous 
region marking, segmentation of cell/nuclei aggregates, and 
individual cell/nuclei segmentation).  

II. BACKGROUND 
For automatic quantification of folic acid receptor 

expression, we need to distinguish normal regions from 
cancerous regions. Several research endeavors pertaining to 
segmentation rely on blob detection and sub-image 
segmentation. Hinz [1] assumes each blob is a rectangular 
step function and detects the center of each blob by locating 
the maximum curvature along the width and length direction 
of the rectangle. The Hessian matrix defines the orientation of 
rectangles. Jiang et al. [2] extracts cytoplasm and nuclei of 
white blood cells using two different methods: scale space 
filtering to segment the nuclei and watershed clustering to 
segment the cytoplasm. Morphological anisotropic diffusion, 
and moving interface models segment leukocytes in [3] and 
[4], respectively. Lamberti and Montrucchio [5] use 
multistage segmentation technique for classification of blood 
vessels. It identifies the most probable cell locations using 
cell brightness and morphology segments Hematopoietic 
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Stem Cells (HSCs) [6]. Ben Sheh [7] uses geodesic 
reconstruction to segment drusen in eye fundus images and 
also proposes direct classifications of cancer cells. DBSCAN 
(density-based algorithm for discovering clusters in large 
spatial databases with noise) and a support vector machine 
(SVM) segments head and neck cancer cells in [8]. 

Most of the blob detection and other segmentation 
approaches described above assume small intensity variation 
within each blob or region. This is not necessarily the case for 
our data set because the image is acquired from a microscope 
with different illumination and staining within each slide. 
Heterogeneity of cancer cells also makes that assumption less 
likely to be true. Furthermore, most algorithms consider pixel 
intensity and spatial information separately. We propose to 
look at intensity variations in a spiral fashion to integrate both 
intensity and spatial information. Our algorithm is designed 
to perform ROI segmentation at different scales and is 
capable of handling the intensity variations and tissue 
heterogeneity.    

III. METHODOLOGY 
A block diagram of the overall methodology is shown in 

Figure 1. A spiral intensity profile is constructed for each 
pixel in the down-sampled image. Those profiles are 
smoothed and k-mean clustering algorithm is used to classify 
into different clusters. Individual cluster represents 
segmented cancer region. 

 
A. Image Enhancement 
Since the biopsy tissue image is captured with lighting 

provided through back projection, most pixels have high 
intensity values. First, we convert the RGB images to gray 
scale images.  Histogram equalization is performed to utilize 
the full intensity range of each pixel. Low pass filtering with a 
Gaussian kernel of size 5x5 is used to smooth out local 
intensity variations. The input image is 1600x1200 in size. To 

reduce computation time, the image is down sampled by 4.  

B. Spiral Profile 
We propose to un-wrap pixels in a spiral to form the spiral 

intensity profile. A spiral intensity profile is constructed for 
each pixel in an image. This is done by reordering 
neighborhood pixels so that their spatial locations form a 
clockwise spiral originating from the central. The 
re-organization of a 5 x 5 neighborhood (wc = 2) in a spiral 
fashion is shown in Figure 2.   

 
I(x-2,y-2) 22 I(x-1,y-2) 15 I(x,y-2) 10 

If, I(x,y) is the intensity of the central pixel in the 
neighborhood, then a spiral sequence is generated starting 
from the central pixel in a clockwise manner. For example, in 
Figure 2, I(x,y+1) indicates that the intensity of the pixel at 
(x,y+1) occurs at the fourth position in the spiral intensity 
profile. Each pixel of the input image is treated as the central 
pixel with zero padding for pixels lying on the input image 
edges.  For each intensity profile, we compute the distance 
and angle from all the pixels in a neighborhood of size wc.  
The distance r is calculated for each neighboring pixel with 
respect the center pixel (xc, yc) within the neighborhood wc.  
 ( ) ccc wyxyyxxr ∈−+−= ,;)()( 22  (1) 

The angle θ is the angle between the central pixel and the 
neighboring pixels within a neighborhood of size wc and is 
given by  
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Figure 3 shows the graphical representation of the angle and 
distance. 

 
We sort r in ascending order, and for terms with the same 
value of r, we further sort them according to the angle θ. 
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The sorted sequence of intensity values in the neighborhood 
gives the spiral intensity profile, S(xc, yc), for the central pixel 
at (xc, yc) within the neighborhood wc. Figure 4 shows the 

I(x+1,y-2) 16 I(x+2,y-2) 23 
I(x-2,y-1) 14 I(x-1,y-1) 6 I (x,y-1) 2 I(x+1,y-1) 7 I(x+2,y-1) 17 
I(x-2,y) 13 I(x-1,y) 5 I(x ,y) 1 I(x+1,y) 3 I(x+2,y) 11 
I(x-2,y+1) 21 I(x-1,y+1) 9 I(x,y+1) 4 I(x+1,y+1) 8 I(x+2,y+1) 18 
I(x-2,y+2) 25 I(x-1,y+2) 20 I(x,y+2) 12 I(x+1,y+2) 19 I(x+2,y+2) 24 

 
Fig 2.  Relationship between pixel location, I(u,v)., and pixel order, 

blue/bold indexes, of a 5x5 spiral. 
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 Fig 1.  Overall methodology. 
Fig 3.  Distance and angle calculation for spiral profile. 



 
 

 

  
Fig 5.  Top: Normalized intensity profile of locations inside the 

cancerous region; Bottom: outside the cancerous region. 

 
Fig 4.  Top: spiral intensity profile of locations inside the cancerous 

region; Bottom: outside the cancerous region. 

spiral intensity profiles of two pixels inside and outside the 
cancerous region. 
  

C. Cancer Cell Classification 
From the two spiral intensity profiles in Figure 4, we see 

that the profile changes significantly for pixels inside and 
outside of a cancer cell. To account for the high-frequency 
noise introduced from pixels that are far away from the center 
of the spiral, an eleven-point moving average filter is applied. 
The intensity level is also normalized to the interval [0, 1]. 
Figure 5 shows the result of the smoothed and normalized 
spiral intensity profiles.  From the two normalized intensity 
profiles, we see that similar regions would likely have similar 
spiral intensity profiles. We exploit this characteristic by 
applying a simple 4-class k-means algorithm to cluster the 
spiral intensity profiles into different classes.  We use the 
result from the k-means clustering  as a mask to segment out 
the cancerous region from background. By varying the 
neighborhood size wc, we are able to apply the same algorithm 
for finer segmentation of cancerous regions into nuclei 
clusters and individual nuclei. 

IV. BIOPSY / IMAGE ACQUISITION 
The folic acid receptor (FR) expression in tissue specimens 

is determined using a goat anti-human FR polyclonal 
antibody (sc-16387, 1:100 dilution; Santa Cruz 
Biotechnology, Santa Cruz, CA, USA). Goat IgG at 1:100 
dilutions is used as a negative control. Immunohistochemical 
analysis of formalin-fixed, paraffin-embedded human 
specimens is performed according to a modified procedure. 

In brief, after deparaffinization with xylene and rehydration 
with EtOH, endogenous peroxidase activity is blocked by 
incubating the slides in 3% hydrogen peroxide with methanol 
for 15 minutes. To retrieve the antigens, the tissue slides are 
heated in a microwave oven in 100M sodium citrate buffer  
(pH 6.0) for 10 minutes and then allowed to remain at room 
temperature for 20 minutes. After washing in PBS, the slides 
are incubated with serum blocking solution (2.5% normal 
horse serum, Vector Laboratories, Burlingame, CA) 
containing Avidin ( Blocking Kit, Vector Laboratories) for 30 
minutes to decrease the background signal. Next, the slides 
are incubated with a 1:100 dilution of anti FR primary 
antibody at 4˚C overnight, and washed with PBS. Then the 
slides are incubated with a biotinylated secondary antibody 
for 20 minutes at room temperature and with biotin-avidin 
peroxidase conjugate (ABC kit, Vector Laboratories) for 15 
minutes at room temperature. The substrate is then added 
(0.1% 3.3’-diaminobenzidine solution, Sigma Chemical Co., 
St. Louis, MO, in PBS with 0.01% hydrogen peroxide) for 5 
minutes. Finally, the slides are counterstained with 
hematoxylin for 50 seconds (Vector laboratories) and then 
observed by light microscopy. 

All images are captured using Optronics MicroFIRE True 
Color Firewire Microscope Digital CCD Camera. Ten images 
are captured per slide at 200X magnification. Those images 
are color balanced automatically with vendor provided 
software. The camera is set to have shutter speed of 25ms and 
gain of 3. 

V. RESULT 
We apply the proposed algorithm to process head and neck 



 
 

 

 
 

 
Fig 6.  Top: original image; Bottom: marked image. 

 
Fig 7.  Result for the central portion of the image in Fig 6. 

cancer tissue images. The size of original image is 1600x1200 
pixels. Each pixel contains a 24-bit value with 8 bit 
corresponding to red, green and blue planes. To reduce the 
computation time, we down sample the image by 4, so that the 
image size is 400x300 pixels.  

An original head and neck cancer tissue image, along with 
the segmented results showing the marking of cancerous 
regions is shown in Figure 6. The two rectangular bands 
along the image boundary are formed due to zero padding of 
the boundary pixels. The spiral intensity profile of these 
bands is different from the cancerous and noncancerous 
regions and thus appears as two separate clusters using the 
k-means algorithm. 

The result for the center portion of the biopsy is shown in 
Figure 7. The edge is removed to show only relevant data. 
Our algorithm successfully segments cells with different 
shapes and sizes corresponding to both normal and cancer 
cells in spite of these morphological variations.  

Segmented results for another image are presented in 
Figure 8 along with pathologist marked gold standard.  We 
have 30 images that are manually marked. We estimate the 
specificity by calculating the difference in area between the 
gold standard and our results, assuming that the gold standard 
is the positive case. Overall, the algorithm achieves 
specificity of 83.73% and sensitivity of 61.12%. It can be 
seen that our results correspond well with the gold standard 
from the pathologist except that the partial necrotic or 
differential regions inside the cancerous areas are also 
marked by our algorithm and rectangular bands along the 

image boundary occur due to zero padding as mentioned 
before. Marking of cancerous regions is obtained with wc= 20 
and segmentation of nuclei clusters is obtained with wc= 10. 
Individual nuclei can be segmented using wc= 5.  This 
demonstrates that our algorithm can be effectively used for 
segmentation at different levels and subsequent 
quantification of folic acid receptor at each level of 
segmentation.   Results at multiple level of segmentation are 
shown in Figure 9, 10, and 11 for different neighborhood 
values of wc. With a neighborhood window size of five, we 
are able to segment individual nuclei, however, as the 
window size increases the cluster map evolves into a 
cancerous versus noncancerous mask.  

 
 

 
Fig 8.  Top: image marked by our algorithm; Bottom: image marked by 

pathologist (gold standard). 



 
 

 

     
 

 
Fig 9a.  Top: input image; Bottom: cluster map with wc=5.

 

   
 

  
 

 

 
Fig 9b.  Top: segmented nuclei aggregates; Bottom: individual 

segmented nuclei with wc =5.

 
Fig 10.  Top: cluster map; Middle: segmented nuclei regions; Bottom: 

nuclei aggregates with wc =10. 
 

VI.   DISCUSSION AND FUTURE WORK 
We show that considering the intensity pattern in a spiral 

fashion could help identify regions of interest in head and 
neck cancer tissue images. Spiral intensity profiles integrate 
both pixel intensity information and spatial information about 
its neighbors. Our algorithm works best when the cell is 
circular, because we use a symmetric spiral. This is mostly 
true when quantifying head and neck cancer tissue images. To 
apply our algorithm on other types of cells, the shape of the 
spiral can be changed. For instance, different spirals can be 
obtained using a rectangular neighborhood area instead of a 
square neighborhood. This will give the elliptical spiral 
which may be suitable for cell with other shaped. 

 



 
 

 

 
 In some of the results, we see the edge effects. The edges at 
the boundary of cancerous and noncancerous regions appear 
as straight lines instead of following the region contours as 
shown in Figure 12. This straightening effect is more 
prominent with large neighborhood size wc and can be 
attributed to the insufficient spatial resolution that results due 
to aliasing caused by down sampling the image. Aliasing can 
be prevented in three ways: 1) Using a higher sampling 
frequency; 2) Low-pass filtering the image to obtain a band 
limited signal; 3) Block processing the whole image to 
preserve spatial resolution. We could overcome this effect by 
block processing the image data instead of down sampling the 
image.  The whole image (1600x1200) can be divided into 
sixteen blocks of size 400x300 and each block is processed 
individually. This would reduce the aliasing effect; however, 
the computation time will increase.  
 The classification of cancer cell regions is fully automatic, 
so the speed of the algorithm is less of an issue because it can 
be computed offline. However, the algorithm speed could be 
improved for real-time use by using methods like an image 
pyramid.  Since we are able to segment the biopsy image, 
future work will involve folic acid receptor quantification for 
different segmentation levels.  We would be able to provide a 
quantitative measure of the folic acid receptor expression for 
the whole cancerous region, nuclei/cell clusters and for single 
nuclei and cells.  Also, we will test our algorithm for biopsy 
images of other cancer types.  

  

 
 

 
Fig 12.  Edge effect located on the boundary of cancer and 

noncancerous regions.  Arrows indicate the areas where straight edges 
occur in segmented regions. 

 

 
Fig 11.  Top: cluster map; Bottom: segmented cancerous regions with 

wc =20. 
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