
  

  

Abstract–This study examines a variety of Artificial Neural 

Network (ANN) models in terms of their classification efficiency 

in an orthopedic disease, namely osteoporosis. Osteoporosis risk 

prediction may be viewed as a pattern classification problem, 

based on a set of clinical parameters. Multi-Layer Perceptrons 

(MLPs) and Probabilistic Neural Networks (PNNs) were used 

in order to face the osteoporosis risk factor prediction. This 

approach is the first computational intelligence technique based 

on ANNs for osteoporosis risk study on Greek population. 

MLPs and PNNs are both feed-forward networks; however, 

their modus operandi is different. Various MPL architectures 

were examined after modifying the number of nodes in the 

hidden layer, the transfer functions and the learning 

algorithms. Moreover, PNNs were implemented with spread 

values ranging from 0.1 to 50, and 4 or 2 neurons in output 

layer, according to coding of osteoporosis desired outcome. 

The obtained results lead to the conclusion that the PNNs 

outperform to MLPs, thus they are proved as appropriate 

computation intelligence technique for osteoporosis risk factor 

prediction. Furthermore, the overfitting problem was more 

frequent to MLPs, contrary to PNNs as their spread value 

increased. 

The aim of proposed PNN is to assist specialists in 

osteoporosis prediction, avoiding unnecessary further testing 

with bone densitometry. 

I. INTRODUCTION 

Artificial Neural Networks (ANNs) are subfield of 

Artificial Intelligence (AI) systems. Their ability to correlate 

input and corresponding output data [1] – [4], based on 

vector mapping, has established themselves as a powerful 

tool in various applications. ANNs have been applied in 

various medical fields, constituting themselves as a useful 

technique in clinical practice [5] – [7], such as cardiology 

[8], oncology [9], pathology, endocrinology [10], radiology 

[11], urology [12] – [15], pneumonology [16], pediatrics 

[12], [17] and pediatric surgery [17], [18]. Medicine is a 

field that ANNs can be proven as a powerful tool to enhance 

current medical techniques [17] – [21]. 

This study focus on the development and assessment of 

ANN pattern recognition models based on both Multi-Layer 
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Perceptrons (MLPs), as well as Probabilistic Neural 

Networks (PNNs) and the application of these models to the 

problem of osteoporosis risk factor prediction. More 

specifically a decision support tool has been developed to 

help clinicians identify which people are at increased risk for 

osteoporosis and should therefore undergo further testing 

with bone densitometry. This application area is considered 

as extremely important since early detection of osteoporosis 

is vital for the prevention of osteoporotic fractures, which are 

associated with increased morbidity and mortality and high 

socio-economic costs. The proposed ANN architectures and 

their performance in clinical data are presented in this paper. 

II.  MATERIALS AND METHODS 

A.  Osteoporosis 

Osteoporosis is the prevailing bone’s disease, and its 

features are low bone density mass and the modification of 

their micro-architecture structure, so that bones’ tolerance is 

reduced and the risk of fracture is increased. Apart from the 

direct physical implications of a fracture, such as pain and 

inconvenience, osteoporotic fractures involving the hip or 

the spine are a major cause of morbidity and mortality. 

Studies show that two out of five people over seventy-five 

who fracture a hip will die within a year as a direct result. 

There is an enormous public health problem with huge 

recourses required to deal with the immediate and long-term 

effects of fractures like hospitalization, loss of independence, 

support at home or in institutions etc. In the European Union 

one person breaks a bone because of osteoporosis every 

fifteen seconds. 

Often the first apparent symptom of osteoporosis is a 

broken bone, which is why the condition is also known as 

“the silent crippler”, as people do not realize they have 

osteoporosis until it’s too late. However early detection and 

treatment of osteoporosis can decrease the fracture risk of a 

person to a minimum. For these reasons, there are studies 

[6], [7] where NNs were used for predicting whether a 

person has osteoporosis or not. 

Osteoporosis is presented after the age of 50 years and its 

frequency increases in proportion with the age. It is most 

common for women than men. The ordinary type of 

osteoporosis arises after menopausal. A percentage of 75% 

of women with osteoporosis, doesn’t known their trouble. 

The main factor for osteoporosis growth is the high osteal 

density mass loss between 45 to 50 years of a person. The 

osteal absorption is greater than osteal production, specific 

for women elder than 50 years. Thereby, the osteal density 

mass loss is prospective. 
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The osteoporosis diagnosis, both a priori without 

symptomatic findings or in case of a bone fracture, is based 

on laboratory and osteal bone densitometry examination. 

This examination is applied to specific bones, using Dual 

Energy X-ray absorptiometry. This technique is based on 

radiation absorption from the patient, so it is not 

recommended for entire orthopedic cases. 

The osteoporosis data, which were used at the design of 

ANN models, were obtained from the Orthopedic Clinical 

Information System of Alexandroupolis’ University 

Hospital, Greece. For each case, there were 4 clinical 

parameters that have been considered. These parameters 

were: sex, age, height and weight. The estimation of 

osteoporosis risk factor was based on T-score value, which is 

the patient’s bone density compared with the normally 

expected in a healthy young adult of the same sex. 

The present study is based on data set consisted of 3426 

cases. This data set was divided into a set of 2426 records 

and another set of 1000 records. The former was used for 

training of MLPs and the construction of PNNs, whereas the 

latter for performance testing of neural networks. 

B. Neural Network Models for Osteoporosis Risk 

Prediction 

The proposed pattern recognition models for 

osteoporosis risk factor classification are based on a  

non-symbolic computational intelligence method 

implemented by ANN [12]. The development of such an 

ANN demands the determination of a number of parameters, 

such as the type of ANN, the number of neurons in each 

layer and the applied learning algorithm. 

MLPs are feed-forward networks with back-propagation 

learning rule and are used in majority of ANN models [22], 

[23]. The correlation of dependent and independent variables 

constitutes an important feature for MLPs, so they can be 

used in medical data processing. 

A MLP consists of an input layer, where the number of 

input nodes equals to the number of variables of the 

problem, and an output layer with a number of nodes defined 

by the problem’s requirements [2]. The hidden layers and a 

large number of characteristics of MPL are varied. 

Although MLPs have been used successfully in a wide 

range of medical applications, they are faced with suspicious 

by many researcher [24], [25]. The reason of this 

confrontation proceeds by the heuristic (“black-box”) feature 

of MLPs, as they can detect hidden correlations into data. In 

contrast to the “black-box” feature of MLPs, PNNs which 

approximate Bayesian statistical technique, combine new 

input vectors with existed storage data in order to classify 

correctly the input data; a process familiar to human 

behavior [26]. 

PNNs are based on Parzen’s Probabilistic Density 

Function (PDF) estimator [27] and their aim is the correct 

classification of input vectors to one of the available target 

classes of the problem. A PNN is a three-layer feed-forward 

network, consisting of an input layer, a radial basis and a 

competitive layer. The radial basis layer computes distances 

from the input vector to the training input vectors and 

produces a vector whose elements indicate how close the 

input is to a training input. The third layer sums these 

contributions for each class of inputs to produce as its net 

output a vector of probabilities. Finally, a competitive 

transfer function on the output of the third layer classifies the 

input vector into a specific class because that class has the 

maximum probability of being correct. 

The number of input nodes of PNN equals to the number 

of variables of the problem and the number of nodes for 

output layer equals to the number of classes, as they are 

defined by the problem. The number of nodes for hidden 

layer is the number of patterns during the PNN’s 

construction. 

The PNNs do not require iterative learning process, so that 

may managed magnitude of data faster that MLP neural 

networks. This PNNs’ feature results by the Bayesian 

technique’s behavior. 

The osteoporosis risk factor prediction is based on four 

variables; consequently, in this study, the input layer of 

implemented ANN models consists of 4 neurons. The 

neurons’ number of output layer is defined by both the 

desired number of problem’s variables and the type of ANN. 

Specifically, the MLP demands a neuron in output layer for 

estimation of osteoporosis risk factor’s stages, as the MLP’s 

result is an integer value of 1 to 4, whereas the PNN 

architecture uses so many neurons as the number of 

osteoporosis’ stages, that constitute the number of classes of 

input data. 

The development of ANNs demands the data 

preprocessing. For this study, the sex variable was coded as 

1 for female and 2 for male persons, whereas age, height and 

weight (measured in years, cms and kgs correspondingly) 

were obtained as recorded in the database. The input 

parameters of ANNs, as well as their coding are presented in 

Table I. The 1st column of the Table I corresponds the 

ANNs’ inputs with osteoporosis variables that are presented 

in the 2nd column. The 3rd column depicts the coding of 

each variable. The parentheses report the physical 

correspondence for each variable coding. The values of 

variables age, height and weight are numerical that 

correspond to age, height and weight of each patient. 

The output variable of ANNs was the T-score parameter. 

These values of bone densitometry were classified into 4 

stages, as presented in Table II, so their coding is a number 

according to T-score result. 

TABLE I. 

CODING OF OSTEOPOROSIS CLINICAL PARAMETERS. 

NN inputs Variables Coding 

1 Age Numeric value (years) 

2 Sex 1 (Woman) 2 (Man) 

3 Height Numeric value (cm) 

4 Weight Numeric value (kg) 

 



  

The used transfer functions of the MLP structure, were 

two, nominally hyperbolic tangent sigmoid for hidden layer 

and linear for output layer [28], [29]. The radial basis and 

competitive transfer functions were applied for hidden and 

output layer of PNN, correspondingly [28], [29]. 

Mathematical equations of these transfer functions are 

depicted in Table III. 

The determination of numbers of neurons for MLP’s 

hidden layer was achieved by trial and error. The  

Levenberg-Marquardt back-propagation learning algorithm 

was selected for MLPs’ training, as it is a robust algorithm, 

appropriate for non-linear least-squared problems [28]. 

The structure of PNNs has only one hidden layer, contrary 

to MLPs, where the number of hidden layers is not 

completely defined. Moreover, the number of neurons for 

PNN’s hidden layer depends by the number of patterns 

during PNN’s construction. Consequently, the proposed 

PNN had 2426 neurons for hidden layer, as the available 

data set for PNN implementation, consisted of 2426 cases. 

PNNs’ design is straightforward and does not depend on 

training, thus no learning algorithm was selected during 

PNN’s implementation [28]. 

The mean squared error (MSE) [28] was used as 

evaluation criterion of performance of MLPs which 

mathematical notation is  

where N is the number of patterns, t(k), a(k) and e(k) are the 

desired, the MLP’s calculated and the error value for pattern 

k, respectively. 

As mentioned above, the neurons’ number of input and 

output layers is defined by the problem. It was clarified in 

section II that input parameters are 4 and output parameter is 

one; consequently, in this study, the input layer consists of 4 

neurons and the output layer has one neuron that determines 

the patients’ osteoporosis risk factor. The definition of 

neurons in hidden layer was achieved by a computational 

process that modifies the number of these neurons and 

calculates the performance for each of ANN topologies. 

The PNNs architecture is constrained by the available 

features of specific problem, however, the width of the 

calculated Gaussian curve for each probability density 

function have to be defined. In the present study, this spread 

factor varied from 0.1 to 50. 

III. RESULTS 

The development and performance assessment of ANN 

models were based on MATLAB Neural Network Toolbox, 

due to its effectiveness and user-friendly interface [28]. 

The results of implemented MLPs are summarized in 

Table IV. The 2
nd

 and 3
rd

 columns describe the MLP 

architectures and the transfer functions of each ANN’s 

model, correspondingly. The desired MSE for each MLP 

structure is represented in the 4
th

 column. The percentages of 

successful prognosis over testing, training and overall data 

set are presented in 5
th

, 6
th
and 7

th
 columns, correspondingly. 

In other words, the 5
th

, 6
th

 and 7
th
 columns represent the 

correct classified cases over 1000, 2426 and 3425 cases 

correspondingly. The 8th, 9th and 10th columns depict the 

percentages of successful prognosis over pathological cases 

for testing, training and overall data set, respectively. The 

values in parenthesis exhibit the real number of cases that 

were detected correctly by implemented MLPs. 

The implemented MLPs underwent to further processing 

in terms of their predicting abilities. As mentioned in section 

II, the possible stages of osteoporosis examination are four, 

whereof three are referred in pathological situations and one 

is referred for patients without osteoporosis. Consequently, 

the osteoporosis risk factor’s stages classified into two 

groups, one for pathological cases and another group for 

persons without osteoporosis. These results were encoded to 

0 for normal cases and 1 for pathological cases, thus it was 

attempted a binary coding of the desired results, in order to 

be used by artificial neural models. 

The results of MLPs’ simulating phase for two stages 

coding are summarized in Table IV. In particular, the 

columns 11
th

 to 13
th

 depicts the percentage of cases that were 

classified correctly, whereas 14th to 16th columns presents 

the pathological cases that were detected true positive cases.  

During the implemented phase, the initial weights and 

biases of MLP neural networks were varied, keeping the 

other parameters unchangeable. In particular, Nr. 1 and Nr. 2 

neural network models have the same architecture, but their 

initial conditions were different. Similar configurations were 

applied to Nr. 4 – 7 and Nr. 8 – 10 in order to train and 

construct ANNs for osteoporosis risk factor prediction. It is 

obvious that different initial conditions for MLPs training 

imply variation of neural networks’ performance. 

The obtained results on Table IV present that as the 
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TABLE III. 

TRANSFER FUNCTIONS 

Transfer Function Mathematical Equation 

Competitive 

(compet) 

Calculates a layer’s maximum 

output from its net input 

Hyperbolic tangent sigmoid 

(tansig) 
1

2
1

2
−

−
+

=
x

e
f(x)  

Linear 

(purelin) 

 

xf(x) =  

Radial basis 

(radbas) 
2x

ef(x)
−

=  

 

TABLE II. 

CODING OF T-SCORE VALUES 

T-score Value Coding 

≤ - 2.5 1 

-2.5 – -1.5 2 

-1.5 – 0 3 

≥0 4 

 



  

number of neurons in hidden layer is increased, the 

improvement of MLPs’ performance is achieved. This 

behavior is prospective, as the more neurons in hidden layer, 

the more weights and bias, so the MLP’s ability is improved 

to store acquired knowledge. The performance’s comparison 

of MLPs’ 4-3-1 with 4-5-1 topology proves this statement. 

However, there is a maximum number of neurons in hidden 

layer, which its overstepping implies the decrement of 

MLP’s performance. The limitation of number of hidden 

neurons results from overfitting problem, as the neural 

network has memorized the training patterns, but it has not 

learnt to generalize to new data [12]. The neural networks 

from Nr. 2 and Nr. 11 have difficulty in recognizing normal 

patterns and sorting them in appropriate classification area, 

as they have not the ability to learn from normal input data. 

It is obvious that MLPs’ performance with 2-stages 

osteoporosis coding has been improved, contrary to MLPs 

that had to classify cases into four stages. For example, Nr. 8 

MLP with 2-stages osteoporosis coding outperforms to this 

with 4-stages. The first MLP had not the ability to 

discriminate patients without osteoporosis, classifying all 

records as pathological cases; however, the later MLP 

classified correctly more cases. 

ANNs present insufficient ability to distinguish the 

different desired outcomes because of inadequate training 

process. In this study, an important feature for implemented 

MLPs is the number of normal cases that were sorted 

correctly. The performance of Nr. 6 MLP with 4-stages 

osteoporosis coding is satisfactory, however, only a small 

number of the normal cases distinguished rightly. 

Specifically, the correct classified normal cases for testing 

set is calculated by subtraction of real numbers of the 8
th

 by 

the 5
th

 column. The obtained result is 1, so that only one 

normal case was distinguished correctly. The rest normal 

cases were misclassified as pathological (false positive). 

Similarly, 4 and 5 normal cases classified correctly for 

training and overall data set, correspondingly. 

This study investigates the implementation of neural 

network models in order to incorporate in medical decision 

support systems. The aim of a MLP with 4-5-1 topology, and 

the utilization of competitive transfer function in hidden 

layer, is the combination of types, topologies and transfer 

functions of neural networks in order to construct more 

efficient neural networks. Nevertheless, the aforementioned 

MLP presents diminished performance contrary to other 

MLP’s structures. Moreover, it is clear that this MLP have 

overfitting problem as its ability to distinguish new normal 

and pathological patterns is inexistent. 

TABLE IV 

EXPERIMENTAL RESULTS USING MLP 

4-Stages Osteoporosis Coding 2-Stages Osteoporosis Coding 

Percentage of Successful 

Prognosis 

Percentage of Successful 

Prognosis Over Pathological 

Situations 

Percentage of Successful 

Prognosis 

Percentage of Successful 

Prognosis Over Pathological 

Situations 
Nr 

A
rc

h
it

e
ct

u
re

 o
f 

A
rt

if
ic

ia
l 

N
eu

ra
l 

N
e
tw

o
rk

 

T
ra

n
sf

e
r 

 

F
u

n
ct

io
n

s 

G
o

al
 M

S
E

 

Testing 

Set 

Training 

Set 

Overall 

Set 

Testing 

Set 

Training 

Set 

Overall 

Set 

Testing 

Set 

Training 

Set 

Overall 

Set 

Testing 

Set 

Training 

Set 

Overall 

Set 

1 4–3–1 
tansig 

purelin 
0.5 

29.30 

(293) 

28.98 

(703) 

29.07 

(996) 

34.40 

(291) 

34.31 

(701) 

34.33 

(992) 

83.70 

(837) 

83.80 

(2033) 

83.77 

(2870) 

97.75 

(827) 

98.43 

(2011) 

98.23 

(2838) 

2 4–3–1 
tansig 

purelin 
0.5 

29.40 

(294) 

31.12 

(755) 

30.62 

(1049) 

34.75 

(294) 

36.96 

(755) 

36.31 

(1049) 

84.90 

(849) 

83.88 

(2035) 

84.18 

(2884) 

99.76 

(844) 

99.31 

(2029) 

99.45 

(2873) 

3 4–3–1 
tansig 

purelin 
0.9 

31.00 

(310) 

31.20 

(781) 

31.84 

(1091) 

36.64 

(310) 

38.23 

(781) 

37.77 

(1091) 

19.30 

(193) 

19.21 

(466) 

19.24 

(659) 

4.61 

(39) 

4.16 

(85) 

4.29 

(124) 

4 4–5–1 
tansig 

purelin 
0.5 

31.10 

(311) 

31.74 

(770) 

31.55 

(1081) 

36.76 

(311) 

37.69 

(770) 

37.42 

(1081) 

67.60 

(676) 

70.20 

(1703) 

69.44 

(2379) 

77.66 

(657) 

81.60 

(1667) 

80.44 

(2324) 

5 4–5–1 
tansig 

purelin 
0.5 

30.70 

(307) 

30.87 

(749) 

30.82 

(1056) 

36.29 

(307) 

36.56 

(747) 

36.48 

(1054) 

81.60 

(816) 

81.41 

(1975) 

81.47 

(2791) 

92.91 

(786) 

91.48 

(1869) 

91.90 

(2655) 

6 4–5–1 
tansig 

purelin 
0.5 

31.90 

(319) 

32.40 

(786) 

32.25 

(1105) 

37.59 

(318) 

38.28 

(782) 

38.08 

(1100) 

74.20 

(742) 

73.45 

(1782) 

73.67 

(2524) 

84.63 

(716) 

84.39 

(1724) 

84.46 

(2440) 

7 4–5–1 
tansig 

purelin 
0.5 

32.30 

(323) 

33.35 

(800) 

33.04 

(1132) 

37.59 

(318) 

38.96 

(796) 

38.56 

(1114) 

84.90 

(849) 

84.30 

(2045) 

84.47 

(2894) 

100.00 

(846) 

99.95 

(2042) 

99.97 

(2888) 

8 4–5–1 
tansig 

purelin 
0.9 

30.70 

(307) 

30.87 

(749) 

30.82 

(1056) 

36.29 

(307) 

36.56 

(747) 

36.48 

(1054) 

81.60 

(816) 

81.41 

(1975) 

81.47 

(2791) 

92.91 

(786) 

91.48 

(1869) 

91.90 

(2655) 

9 4–5–1 
tansig 

purelin 
0.9 

32.30 

(323) 

33.35 

(809) 

33.04 

(1132) 

37.59 

(318) 

38.96 

(796) 

38.56 

(1114) 

74.20 

(742) 

73.45 

(1782) 

73.67 

(2524) 

84.63 

(716) 

84.39 

(1724) 

84.46 

(2440) 

10 4–5–1 
tansig 

purelin 
0.9 

31.60 

(316) 

32.03 

(777) 

31.90 

(1093) 

37.00 

(313) 

37.59 

(768) 

37.42 

(1081) 

35.80 

(358) 

34.00 

(825) 

34.53 

(1183) 

31.44 

(266) 

29.56 

(604) 

30.11 

(870) 

11 4–5–1 
compet 

purelin 
0.5 

29.30 

(293) 

28.24 

(685) 

28.55 

(978) 

34.63 

(293) 

33.53 

(685) 

33.85 

(978) 

68.10 

(681) 

65.66 

(1593) 

66.37 

(2274) 

70.80 

(599) 

67.99 

(1389) 

68.81 

(1988) 

12 4–7–1 
tansig 

purelin 
0.5 

31.60 

(316) 

32.03 

(777) 

31.90 

(1093) 

37.00 

(313) 

37.59 

(768) 

37.42 

(1081) 

41.60 

(416) 

45.18 

(1096) 

44.13 

(1512) 

44.92 

(380) 

48.56 

(992) 

47.49 

(1372) 

 



  

The Table V presents the obtained results of PNNs. The 

radbas and compet were the transfer functions for hidden and 

output layers, correspondingly. Whereas the number of 

neurons for input and hidden layers of PNNs was constant, 

the number of output neurons was variable according to the 

coding of desired values. The spread of radial basis function, 

which is used in second layer, is the only parameter that can 

be modified. The values of spread for PNNs with the best 

performance are presented in the 2nd column of the Table V. 

Initially, the implementation of PNNs based on the 4-stages 

of osteoporosis risk factor prediction, so the output layer 

consisted of 4 neurons. The obtained results of 4-2426-4 

PNN topology, after the simulating phase, underwent to 

similar processing with those of MLPs. Consequently, the 

3
rd

, 4
th

 and 5
th

 columns exhibit the percentage of successful 

classification of patterns, whereas the 6
th

, 7
th

 and 8
th

 columns 

represent the performance of PNNs over pathological 

patterns for testing, training and overall data set, 

correspondingly. 

Moreover, the desired stages of osteoporosis risk factor 

were classified into two groups, one for pathological cases 

and another group for persons without osteoporosis. In this 

case, the PNN topology was modified, leading the number of 

neurons for output layer to two. The corresponding results 

that were obtained by execution of 4-2426-2 PNNs topology 

are presented in 9
th

 to 14
th

 columns of Table V. 

A small variation of radial basis spread does not affect the 

PNNs’ performance, as it is shown by Nr. 1 and Nr. 2 PNNs 

in Table V. The difference between 0.5 and 0.6 is 

impalpable, so it does not occurred alteration of obtained 

results. The increase of spread’s value implies the decrease 

of PNN’s performance for estimation of normal and 

pathological cases for overall and training data set. 

Moreover, it is mentioned that the percentage of successful 

prognosis for overall and pathological cases of testing set 

increases as the spread’s value increases. However, there is a 

value of spread that constitutes limit for the performance 

improvement for testing set. The limit for spread parameter 

of the implemented PNNs equals to 7.3, whereas values 

greater than aforementioned number involves the decrement 

of PNNs’ predicting ability for testing set. The Nr. 1 and Nr. 

2 PNNs have not sufficient generalization ability, contrary to 

Nr. 3 PNN, which classifies correct new patterns that present 

in the input layer of the neural network. 

It is pointed out that Nr. 4 PNN outperforms Nr. 3 PNN, 

as concluded by obtained results. Nevertheless, it is 

important to compare the normal cases that were classified 

correctly, as calculated by the subtraction of pathological by 

entire cases for testing, training and overall data set. Thus, 

the successful categorized normal cases are 23, 153 and 176 

for testing, training and overall data of Nr. 3 PNN with 4 

neurons for output layer, whereas for Nr. 4 PNN 

corresponding values are 18, 121, and 139. Moreover, the 

Nr.3 PNN with 2 neurons for output layer classified 14, 67 

and 81 normal cases contrary to 10, 26 and 36 normal cases 

of Nr. 4 PNN. It is obvious that Nr. 3 PNN has the ability to 

classify more normal cases than Nr. 4 PNN. Consequently, 

Nr. 3 PNN outperforms Nr. 4 PNN, in terms of 

generalization ability. 

TABLE V 

EXPERIMENTAL RESULTS USING PNN ARCHITECTURES 

  4 neurons for output layer 2 neurons for output layer 

Percentage of Successful 

Prognosis 

Percentage of Successful 

Prognosis Over Pathological 

Situations 

Percentage of Successful 

Prognosis 

Percentage of Successful 

Prognosis Over Pathological 

Situations Nr 

S
p

re
ad

 o
f 

ra
d

b
as

 

Testing 

Set 

Training 

Set 

Overall 

Set 

Testing 

Set 

Training 

Set 

Overall 

Set 

Testing 

Set 

Training 

Set 

Overall 

Set 

Testing 

Set 

Training 

Set 

Overall 

Set 

1 0.5 
30.40 

(304) 

99.04 

(2233) 

74.05 

(2537) 

32.74 

(277) 

93.10 

(1902) 

75.42 

(2179) 

78.80 

(788) 

97.28 

(2360) 

91.89 

(3148) 

89.95 

(761) 

99.51 

(2033) 

96.71 

(2794) 

2 0.6 
30.40 

(304) 

99.04 

(2233) 

74.05 

(2537) 

32.74 

(277) 

93.10 

(1902) 

75.42 

(2179) 

78.80 

(788) 

97.28 

(2360) 

91.89 

(3148) 

89.95 

(761) 

99.51 

(2033) 

96.71 

(2794) 

3 2.7 
34.80 

(348) 

58.16 

(1411) 

51.34 

(1759) 

38.42 

(325) 

61.58 

(1258) 

54.79 

(1583) 

84.70 

(847) 

86.73 

(2104) 

86.14 

(2951) 

98.46 

(833) 

99.70 

(2037) 

99.34 

(2870) 

4 3.6 
36.20 

(362) 

50.62 

(1228) 

46.41 

(1590) 

40.67 

(344) 

54.19 

(1107) 

50.22 

(1451) 

85.00 

(850) 

85.20 

(2067) 

85.14 

(2917) 

99.29 

(840) 

99.90 

(2041) 

99.72 

(2881) 

5 7.3 
40.30 

(403) 

41.63 

(1010) 

41.24 

(1413) 

46.10 

(390) 

48.21 

(985) 

47.59 

(1375) 

84.80 

(848) 

84.46 

(2049) 

84.56 

(2897) 

99.88 

(845) 

100.00 

(2043) 

99.97 

(2888) 

6 13.1 
38.20 

(382) 

39.74 

(964) 

39.29 

(1346) 

44.92 

(380) 

46.84 

(957) 

46.28 

(1337) 

84.70 

(847) 

84.21 

(2043) 

84.35 

(2890) 

100.00 

(846) 

100.00 

(2043) 

100.00 

(2889) 

7 19.2 
37.50 

(375) 

38.13 

(925) 

37.95 

(1300) 

44.21 

(374) 

45.28 

(925) 

44.96 

(1299) 

84.60 

(846) 

84.21 

(2043) 

84.33 

(2889) 

100.00 

(846) 

100.00 

(2043) 

100.00 

(2889) 

8 40.0 
32.10 

(321) 

32.28 

(783) 

32.22 

(1104) 

37.94 

(321) 

38.26 

(783) 

38.21 

(1104) 

84.60 

(846) 

84.21 

(2043) 

84.33 

(2889) 

100.00 

(846) 
100.00 

(2043) 

100.00 

(2889) 

 



  

IV. CONCLUSION 

ANNs, as a subfield of computational intelligence, are 

used widely in industrial and medical applications. Despite 

of the ANN’s architectures, learning algorithms and transfer 

functions variety, the basic function of ANNs is the presence 

of an input data set, and the generation of corresponding 

outputs based on vector mapping. 

In this paper, the possibility of applying artificial neural 

models in medical making decision, and in particular, the 

osteoporosis risk factor estimation has been examined, 

because it is an important medical problem for public health. 

Its frequency and the serious consequences for patients are 

the reasons for the vivid interesting for development of 

computational and accurate techniques which do not expose 

the patients in radiation.  

The development of artificial neural techniques was based 

on MLPs with back-propagation algorithm, as well as PNNs, 

which are both feed-forward neural networks. The MLPs has 

been characterized as black box, because the internal 

connections are highly non-linear and not subject to the usual 

statistics. On the other hand, PNNs approximate Bayesian 

function; however, their output is clearly not a probability, as 

several steps are required to osteoporosis risk factor 

prediction. 

As it was found, the PNNs outperformed the MLPs, in 

terms of the successful prognosis of cases. Therefore the 

proposed methodology unveiled the PNN artificial models’ 

behavior contrary to MLPs artificial networks’ behavior is 

much better, or in other words, the prognostic ability of 

PNNs is enhanced compared to MLPs categorization 

performance.  
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