
 

 

 

  
Abstract - Metrics of network structure obtained using Graph 

Theory can provide valuable insights into the functioning and 

overall operation of neuronal networks in the brain. The 

objectives of this paper are to highlight the shortcomings of 

commonly used network structure metrics in the study of 

functional connectivity networks today and to propose a 

methodology for deriving more sensitive metrics which may be 

used to detect and characterize dementia and other disconnection 

syndromes. 

Index Terms—Functional connectivity, Alzheimer’s Disease, 

modeling, simulation 

I. INTRODUCTION 

RAPH Theory represents  an important tool for the study 

of functional neuronal networks of the brain. The current 

consensus from studies with functional modalities, such as 

EEG, MEG and fMRI,  is that brain networks are most likely 

to exhibit “Small-World” properties at structural and 

functional levels, which is associated with efficient 

information exchange and minimization of total “wiring” 

length [1,2]. The importance of this finding is further 

underlined by recent research showing that the deviation of a 

brain functional network from Small-World properties is 

associated with a diseased state [3]. A widely accepted theory 

of the functioning brain is that it does not operate as a single 

organ and there does not exist a single “command centre”  

[4,5-pp471-522]. Instead, due to functional integration, several 

areas of the brain are incorporated into a temporary functional 

network, which exchange and process information depending 

on the cognitive task. 

The study of functional connectivity is of particular 

importance in brain diseases such as Alzheimer’s disease 

(AD). Normal aging and AD affect both the structure, the 

intricate way that the neurons are connected with each other, 

and the cognitive processes or function of a human brain. 

However, the impact on functional processes, that are more 

dynamic, is more pronounced than the structural changes [6-

p331-332]. Certain network metrics provide valuable insights 

into the role of network structure in the overall operation of 

neuronal network. Clustering Coefficient, Path Length [7,8,9], 

Global Efficiency and Cost [10,11] are the most frequently 
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used metrics  in the study of functional networks and to some 

extent they have also been successfully employed in research 

into the ageing brain [10].  However, these metrics are limited 

especially in relation to monitoring disease progression.  

Previous work in monitoring disease progression through 

structural imaging modalities such as Computed Tomography 

(CT)[12] and Magnetic Resonance Imaging (MRI) [13, 14-

p334] have revealed the accelerated reduction of volume in 

diseased brains. However, the corresponding evolution of 

functional connectivity metrics versus disease progression has 

not being investigated sufficiently.  

The main objectives of this paper are to highlight the 

shortcomings of commonly used network structure metrics in 

the study of functional connectivity networks and to propose a 

novel methodology for deriving more sensitive metrics which 

may be used to detect and follow progression of diseases such 

as AD and other disconnection syndromes. 

From the perspective of early detection and characterization of 

Alzheimer’s disease through serial data collection and 

assessment the following questions arise: 

• Which metrics are the most suitable for the early 

detection and monitoring response to treatment for 

AD for a given dataset modality? 

• How sensitive are the metrics and how many dataset 

acquisitions should occur before small network 

structure changes can be detected? 

• How does the value of a metric vary in relation to 

disease progression? Is  this monotonic? 

• What is the impact of different kinds of disconnection 

syndromes on the brain? Can we discriminate 

between them as early as possible to help a clinician 

in their decision making process? 

The work reported here forms part of a programme of 

research aimed at the development of new and robust methods 

to allow early detection and monitoring of progression of brain 

diseases and response to treatment through modeling and 

studies of the brain using functional modalities.  The 

programme of work takes place within the framework depicted 

in Figure 1.    
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Figure 1 – Workflow of network metrics extraction 

The emphasis of this paper is on ‘graph metrics’ in Figure 1 to 

put this in the context. Conceptually, in Figure 1, functional 

networks of the brain associated with cognition are extracted 

from datasets using a suitable functional modality. Although 

the particular phenomenon that each functional modality is 

monitoring is important for making inferences about brain 

activity, the actual workflows for processing the dataset are 

similar. Thus, development in any part of the workflow in 

Figure 1 has a significant implication across all functional 

modalities.  As shown in the figure, the datasets first undergo 

some form of pre-processing. In the case of EEG and MEG,  

this may involve a form of filtering or artefact processing to 

minimize the effects of noise or artefacts (e.g. muscle and eye 

movements) or to isolate specific brain activity [3,15] . In the 

case of functional modalities such as fMRI, preprocessing may 

involve spatial alignment to minimize correlations that might 

be induced because of head movement [16] and parcellation 

[17,18] to reduce the computational load of subsequent 

processing stages. 

The estimation of functional connectivity is performed 

through suitable linear and non-linear metrics and may lead to 

directed or undirected brain functional networks. Thresholding 

produces an Adjacency Matrix which in essence describes the 

structure of the functional network. The majority of network 

structure metrics applied to the study of functional brain 

networks operate on this matrix and are also used as 

classification features in the subsequent classification block.  

The paper is structured as follows: first, we  demonstrate the 

shortcomings of the most commonly used metrics of network 

structure today in the context of early detection of AD. We  

then undertake an evaluation of their sensitivity and propose 

new metrics based on specific structural properties of the 

network that can be used to monitor network structure much 

more efficiently. Finally, the discussion section summarizes 

the key issues arising from our approach. 

II. MATERIALS AND METHODS 

A. Network Metrics 

Currently, only a subset of known metrics is systematically 

used to estimate functional network structure and to some 

extent used for disease detection.  

These metrics are the Clustering Coefficient, Mean Path 

Length, Efficiency and Cost. Less significant metrics of 

network structure such as average vertex degree have also 

being used [19]. Although these particular metrics are useful 

when studying the properties of brain functionality in general, 

they are not sensitive enough to be used as biomarkers of 

Brain diseases. In the following sections we explain why. 

B. Clustering Coefficient 

Clustering coefficient was defined by Strogatz and Watts 

[20,21]  and applied within the context of sociology research. 

The researchers, used the abstract model of a Graph composed 

of a set of nodes  V connected through a set of Edges E to 

represent social contacts and developed the Clustering 

Coefficient metric (Cp) to estimate the connectivity of each 

node and through this the connectivity of the network as a 

whole.  

Each individual node’s Clustering Coefficient is defined as: 
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Where |E(Γu)| is the number of edges in the subgraph 

defined by the vertices that Vu is connected to and Ki is the 

degree of vertex Vi .  

This is essentially a metric of how far is E(Γu) from an equal 

order clique Kki. 

The Clustering Coefficient of the network is defined as the 

expectation of (1) as follows: 
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By definition the clustering coefficient is only defined over 

connected Graphs which does not necessarily have to be the 

case with neuronal networks. Additionally, the low sensitivity 

of this metric is due to the fact that it is defined as the 

expectation of each Vi. 

1) Clustering Coefficient Issues 

The specific structural element that the Clustering 

Coefficient responds to more is the clique (Kn) and specifically 

the smallest of cliques which is the K3 , also known as the 

‘triangle’. From (1), it is clear that as the order of the clique 

increases, the term 
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ik
 grows much faster. Therefore, the 

fraction that each edge contributes to the value of the metric 

per subgraph vertex is small. The sensitivity of this metric is 

further decreased by the fact that the average clustering 

coefficient is obtained as the expectation over all CVi.  

Therefore, the term 
V

1
introduced in (2) contributes further to 

decreased sensitivity particularly as the network size increases 

as is depicted in Figure 2. This makes the clustering coefficient 

unlikely to respond to changes in functional brain structure 

especially based on high spatial resolution functional modality 

datasets. 



 

 

 

 
 

Figure 2 – The sensitivity of the Clustering Coefficient is decreasing as the 

order of the network is increasing. 

C. Path Length Metrics 

Path length metrics refers to all metrics that employ a graphs 

distance matrix d(G) as in (3).  

)(,),( GVjijid ∈∀  (3) 

This is an NxN matrix with each element d(i,j) describing 

the distance (in number of vertices) between vertex Vi and 

vertex Vj. Obviously, in the case of directed graphs this matrix 

is symmetric around the main diagonal. A number of statistics 

is defined over this matrix. For example, to obtain the Average 

Path Length, the average (modal or algebraic) of d is obtained 

whereas to obtain the Characteristic Path Length the median of 

d is obtained [22-p27].  

Characteristic Path Length was also used by Strogatz and 

Watts [21] and applied within sociological research as well. 

Path Length along with Clustering Coefficient were the two 

features of network structure by which the Small World 

property that some networks exhibit was revealed. The mean 

path length represents the average distance between any two 

nodes Vi, Vj of a network G. For graphs that are not embedded 

in some space R, distance refers to the order of the shortest 

path (number of vertices or hops) that connects any two 

vertices 

1) Path Length Issues 

The Path Length is another statistic obtained over the 

entirety of the network. In undirected networks (Figure 3), the 

structures it is more sensitive to are unique open paths of a 

given length between any two Vi, Vj. However, if two vertices 

Vi, Vj participate in more than one paths connecting them, a 

large number of them would have to be severed before the 

value of the metric changes considerably. 

As with the Clustering Coefficient, this metric is also 

defined only for connected graphs. 

D. Network Efficiency 

Efficiency was first defined by Latora and Marchiori 

[23,24] and later employed in the neuroscience research 

context by Achard et al [10], Basset et al [11] and others. 

Efficiency is a statistic that depicts how well information can 

be transferred between the nodes of a network and is very 

closely coupled with the distance matrix d(G) defined by 

equation 3 above. 

 
 

Figure 3 – The shortest path between vertices A & B will remain at 2 hops 

until most of the alternative paths are severed 

However, contrary to the Mean Path Length, the Efficiency 

refers to the mean of the inverse of the distance matrix d(G). 

Efficiency is defined as: 
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Where LE denotes the efficiency, N the number of vertices 

and d(i,j) is the distance matrix as it was defined in (3). 

This inversion of the distance matrix is an important detail 

which makes this metric suitable for application to weakly 

connected Graphs. That is because, in this type of graphs, 

every pair of unreachable vertices will simply contribute a zero 

to the overall efficiency. 

1) Network Efficiency Issues 

Network efficiency is an improvement, in terms of its 

usefulness to the study of neuronal networks, against Mean 

Path Length because it can be applied to networks with 

disconnected components. However, it shares the same 

negative remarks as Mean Path Length when examined from 

the sensitivity point of view. 

E. Cost 

Cost is a metric which is closely associated with Network 

Efficiency and provides an estimate of resources trade-off to 

achieve a particular Efficiency. Its original definition by 

Latora and Marchiori [25] is: 
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Where, a(i,j) is the weight of an edge connecting Vi with Vj 

and γ is a function of the cost versus length associated with the 

same edge. The function cost(G) is context dependent and 

depicts resource expenditure to establish a particular link 

between any two nodes. This definition is a departure from the 

networks considered so far in that it operates over the weights 

of the edges E(G) and it also introduces the function γ. This 

function depends on the context of the network and it can be 

used to add other length dependent parameters to cost that 

could potentially increase the sensitivity of this metric. 

However when examining simple unweighted graphs that 

are not embedded in some geometric space, the definition of 

cost is reduced to the ratio of existing edges divided by the 

number of possible edges that could have existed in a graph of 

a given size as in (5):
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Where |E| is the total number of edges in a graph and N is 

the total number of vertices. 

Through this definition, cost provides a crude metric of how 

far is any Graph of order N from a corresponding Kn (Clique 

of size n) which additionally has an efficiency of 1. 

1) Cost  Issues 

The Cost is the statistic with the potential for high 

sensitivity over all statistics mentioned so far. This is because 

of the inclusion of the gamma function to its calculation and 

through this additional context information can be used to 

increase the sensitivity of the metric. However, simple 

application of the Cost metric, where the gamma function is 

effectively omitted, does not result in a metric with increased 

sensitivity especially in networks with a high number of 

vertices N. 

F. Simulating Alzheimer’s Disease Progression 

In order to evaluate the performance of these metrics as 

biomarkers of Alzheimer’s disease a simulation framework 

was established. The objective of this is to allow the derivation 

of the metrics’ value versus the corresponding change in the 

structure of the network. The idea is to enable the estimation 

of how long a subject suspected of AD should undergo serial 

data collection before the clinician is in the position to confirm 

significant changes in the brain’s functional networks. Another 

reason that necessitates the use of such simulations is the fact 

that the derivation of analytic expressions for the scaling of 

these metrics is very difficult. [22 p28-29] 

This framework is inspired by observations of the 

macroscopic effects of Alzheimer’s disease on the human 

brain. The brain is represented by a Small World network as it 

would have been extracted by a suitable functional modality 

dataset. The Watts-Strogatz model of Small World networks is 

employed and similarity with realistic brain functional 

networks is ensured by choosing the size (N) and average 

connections k  according to data found in the available 

literature [26]. The size of the network is closely related to the 

modality that would have produced the connectivity data. 

Therefore, a modality like EEG can produce a network of 16-

32 nodes, fMRI can produce a network of up to 90 areas and 

MEG can produce a network of up to 192 areas or more. Once 

a network is constructed, a minimal change of structure 

signifying early onset of Alzheimer’s disease is applied. This 

network structure change can be defined in three different 

ways corresponding to the processes occurring in the brain. 

• Elimination of a Vertex 

• Elimination of an Edge 

• Rewiring of two Edges 

In the context of functional brain networks derived from 

functional modalities having the current spatial resolution 

limits, elimination of a vertex corresponds to a large area of 

the brain being damaged. This usually happens in the case of 

stroke conditions and it has an adverse effect on cognitive 

performance. It is less relevant for the specific purposes of our 

research and will not be considered any further here.  

Edge elimination and rewiring is of particular interest to 

tracking changes in the brain as reduced connectivity between 

brain areas has been closely linked with specific  brain 

diseases[27,28,29]. Finally, edge rewiring corresponds in this 

model to brain plasticity. In any case, the selection of edges is 

totally random over the set of edges already existing in the 

network. The simulation proceeds by calculating the difference 

of metric values before and after this elementary change in 

network structure. In mathematical terms we are attempting to 

estimate: 
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Where M(G) represents each structural metric (Clustering 

coefficient, path length, etc) and d(G-e) represents the change 

in graph structure after one edge has been removed. This 

process is repeated over a number of networks and an average 

change versus the network size is obtained.  

In other words, we estimate the least variation of the 

metric’s value for the smallest change in network structure 

versus network size.  

At a later stage we attempt to evaluate the disease tracking 

capabilities of each metric by allowing the random process of 

edge elimination to occur over a representative functional 

network over a number of simulation steps until the critical 

point where the network develops more than one component. 

This corresponds to the equivalent of serial data collection and 

extraction of functional networks as depicted in Figure 1 and 

provides a view of the expected values for a particular metric. 

The metrics are calculated according to the published 

formulas by Strogatz and Watts [20,21] and Latora and 

Marchiori[24,25] respectively. 

G. Sensitive Structure Metrics 

As outlined in Section II, the primary shortcomings of the 

existing metrics are in their low sensitivity to structure change. 

The primary reason for this is that their derivation depends on 

structures that might be less abundant in a particular type of 

network.  

To alleviate this we propose here a methodology for 

deriving sensitive metrics for both undirected and directed 

networks. The main idea underpinning our derivation is the 

construction of a metric from a subset of coefficients of the 

cycle or motif spectrum of a network. 

The cycle spectrum of a graph |G| is a histogram showing 

the frequency of occurrence of a cycle of length n in a graph. 

A cycle is defined as a closed nontrivial path [30 p39]. That is, 

a unique sequence of non-repeated Vertices (V(G)) and Edges 

(E(G)) connecting them. Cycles and their distribution within a 

graph is an important characteristic of network structure [22 

p24] and has many applications in chemistry [31], genomics 

and other domains [30 p43-46] 

The complexity of counting these cycles in a graph is 

growing explosively and depends on the number of vertices, 



 

 

 

edges and cycles existing in a given graph [32]. For relatively 

small graphs, algebraic methods such as the powers of the 

Adjacency Matrix, number theory based derivations [33], and 

the minimum Cycle Basis can be used. For larger networks (a 

few hundred nodes), it is unavoidable to count the cycles 

directly with efficient search algorithms usually based on some 

form of Depth First Search [32, 33] . When the size of the 

network becomes too large (thousands of vertices) then cycle 

counting relies more on statistical sampling of the network 

[34]. 

An important point that has an impact on the sensitivity of 

network metrics that are based on the cycle spectrum is the 

actual set of cycles enumerated by each class of algorithms 

mentioned above. Generally speaking, the concept of the 

“cycle” is somewhat loosely used in the literature adding to 

confusion. For example, algebraic methods tend to count the 

number of walks that could possibly exist between two given 

nodes returning a large amount of redundant (duplicated) data. 

This redundancy contributes negatively to the sensitivity of a 

metric that estimates structural changes in a very similar way 

to the averaging of the distance matrix d(G). 

In this work we are particularly interested in the set of 

elementary cycles in a graph and this generally means counting 

each cycle just once. Counting algorithms based on Depth 

First Search (DFS) are the most efficient for this task. The 

results in this paper have been obtained with a modified DFS 

algorithm. The modifications were primarily done to reject any 

duplicates found in the data produced by the original 

algorithm. We achieve this by constructing a unique hash code 

once a cycle is discovered. This code is then checked against a 

binary tree of all the codes that have been discovered up to 

that point and if it is found, the cycle is rejected. 

The problems of cycle and motif counting are similar in 

nature although Motif counting is a slightly harder problem. 

This is because, in the case of Motifs, picking up a path from 

the original network and determining if it leads back to the 

starting vertex is not enough. 

The methods that have been developed to efficiently count 

motifs are usually based on variants of the DFS algorithm and 

random sampling of edges. In this work, motif counting tools 

developed by Milo [35] were adapted and used in order to 

extract network motifs. 

Simply extracting the cycle or motif spectrum though is not 

practical. Although the total differences observed across the 

whole spectrum could provide a sensitive network structure 

metric, this could contain unwanted variations. It is therefore 

proposed that a novel metric of network structure is extracted 

by the combination of a small subset of coefficients of the 

spectrum. The question now becomes which and how many 

coefficients? 

A simple strategy was adopted throughout the simulations at 

this stage. This was to select a small number of coefficients 

corresponding to the most frequent elementary structures from 

each spectra (either motifs or cycles) with an additional 

component from the most frequent and longest cycle.  

That is, given the spectrum H of either cycles or motifs 

(denoted here generally as (HM)) : 

GFGFnH iiM ∈∀= )()(  (6) 

The new metric IM is obtained as: 

( ))()()(
3

1
kHjHiHI MMMM ++=  (7) 

Where Fi is the set of elementary cycles and motifs defined 

over the network G and i,j,k are the selected indexes from the 

spectra. 

This approach also takes into account the fact that Graphs of 

different sizes exhibit different distributions. For the 

simulations found in the ‘Results’ section, two coefficients 

corresponding to the elementary structures with the highest 

frequency of occurrence where selected for the case of Motifs 

of size 4. For the special case of cycles [22 p28], an additional 

coefficient corresponding to the longest and most frequent 

cycles was included. The rationale behind this third coefficient 

for the case of cycles is that long cycles in a connected 

network are the first to be lost as edges are removed from the 

graph. Coefficient selection occurs at the first simulation cycle 

which represents a baseline scan at a subject’s first admission 

and tracked in the subsequently produced networks. 

III. RESULTS 

A. Metric Sensitivity 

In order to demonstrate the sensitivity of various metrics at 

detecting small structural changes versus network size, the 

results from a series of simulations were obtained.  

In the context of AD, the data obtained, demonstrate the 

least amount of metric variation one can expect, between two 

successive acquisitions, at baseline and sometime later. 

These simulations were performed on Small World graphs 

using the model of Watts-Strogatz [21]. The size of the 

networks was varied from 28 to 90 which closely follows the 

corresponding networks produced by modalities such as EEG, 

MEG and fMRI [1]. The results are summarized in Figure 4. 

Each point on this curve is obtained by averaging the metric 

variation after at least N* k repetitions to ensure that the 

variation due to the removal of any edge is accounted for 

properly.  

Figure 4 shows the scaling properties of the four commonly 

used metrics along with their standard deviation. Global 

Efficiency is a scaled down and inversed image of the path 

length owing to their similarities in definition. It also is 

apparent that the sensitivity of these metrics is getting worst as 

the size of the network is increased. Therefore, although fMRI 

offers much better spatial resolution and is more accurate in 

localising brain activity, subsequent analysis based on network 

structure metrics would fail in capturing the subtle changes 

occurring in a diseased brain. 
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Figure 4 – Metric value variation versus network size for Clustering 

Coefficient, Path Length, Global Efficiency and Cost  (Note: Values for 

N=60, k=14 and N=90,  k=6 have been obtained after 100 repetitions due to 

the large number of edges) 

It is worth noting at this point that the networks used to 

produce these statistics from do not have similar average 

connection densities and this the reason for the deviations from 

a smooth logarithmic curve. 

The corresponding variation of the metrics derived by the 

Cycle and Motif spectra is depicted in Figure 5.  

A much wider variation for the same minimal changes in 

network structure induced by random edge removal is 

observed. In order to investigate how these metrics would 

behave in long term disease tracking, another simulation was 

performed where the variation of the metrics is examined 

while the process of edge removal is allowed to continue until 

the critical point when the network becomes disconnected. 
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Figure 5 – Average metric value variation versus network size for the two 

most frequent motifs of size 4 and cycles. (Note: Values for N=60, k=14 and 

N=90,  k=6 have been obtained after 100 repetitions due to the large number 

of edges) 
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Figure 6 – Cycle Spectrum at baseline for a Small-World network with N=32, 

k=14 

Figure 6 depicts the averaged cycle spectrum at an assumed 

baseline scan over three realizations of Small-World networks 

with N=32, 14=k . This corresponds to a possible functional 

network obtained through an fMRI dataset as in [1].  

The two most frequent cycle lengths in this graph are those of 

length 6,7 and the longest and most frequent cycle is of length 

26. Because of their high frequency of occurrence within the 

network these cycles are most susceptible to changes. For the 

same network Figure 8 shows the corresponding size 4 motif 

distribution also at baseline. Because the graph is undirected 

not all possible motif classes appear in its spectrum and the 

most frequent class is #107 (hub) followed by class #124 

(kite). It is worth noting here that the full K4 (motif #199) 

which has the strongest contribution to the Clustering 

Coefficient is only a tiny fraction (599) of the two most 

frequent classes in the network (10894). It is therefore bound 

to fluctuate slower than class #107.  

The populations of cycles and motifs described by the 

distributions in figures 6 and 7 will progressively change as 

one edge is removed at random at each simulation cycle. 
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Figure 8 – Motifs of Class 4 at baseline 

The variation of the metric that results as a combination of 

the three most frequent spectra coefficients versus edge 



 

 

 

removal is depicted in Figures 9 and 10. Included in these is 

the variation of C3 (Fig 9) which is the structure that the 

Clustering Coefficient depends on and the variation of K4 (Fig 

10) which also has the strongest contribution to the clustering 

coefficient. The slope of the combined cycle coefficients is 

steeper compared to the variation of C3 alone which means 

that a metric depending on a combination of these structures 

would be more sensitive to subtle variations in network 

structure. A similar situation is depicted by Figure 10. In this 

case, the small number of K4s in the network decreases slower 

than M124 and M107 combined.  
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Figure 9 – Metric variation for C3,C4,C28 

IV. DISCUSSION 

From the simulations carried out so far, the sensitivity of 

metrics based on cycles and motifs have been found superior 

to that of simple statistics over the networks.  

The shortcomings of the clustering coefficient and path 

length when applied to the early diagnosis of AD come from 

the fact that these metrics are averaged over the size of the 

network. This introduces the 1/|V| factor which grows smaller 

much faster than the respective increase in clusters as the size 

of the network is growing. 
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Figure 10 – Variation of motifs versus network deterioration. 

Additionally, the expressions of the four metrics discussed 

in the introductory section respond to specific structures and 

miss others whose variation might be much wider as the 

network progresses. Between the cycle and motif spectra, 

motifs offer much more coefficients in the case of undirected 

networks which exhibit a larger variety of motif classes from 

which to choose from. An example is that from the 199 classes 

of M4, an undirected small-world network (N=90, 

k =6,p=0.08) would exhibit only 6. 

An important point in the selection of a good set of 

coefficients is the differences in the way that the Cycle and 

Motif spectra change versus subsequent edge removal. As the 

network deteriorates, a process corresponding to disease 

progression, the distribution of the coefficients changes in a 

certain way. This process is quite different for Cycle and Motif 

spectra. In general, all the coefficients of the cycle spectrum 

are decreasing monotonically as a proportion of the total 

number of edges with each subsequent edge removal. This is 

expected since every edge in a connected network (that is not a 

tree) contributes to one or more cycles. The same though is not 

true for Motif counting which occurs over a set of subgraphs 

with specific structure. Therefore, deletion of an edge might 

increase the population of a class that did not even exist 

before.  

The additional benefit from using either the cycle or motif 

distribution is that a biomarker could be optimized to track the 

specific way that a disease attacks a functional network. 

However, more data from experiments is needed to establish 

this relationship rigorously. 

As far as the simulation framework is concerned, it provides 

a useful tool to gain an insight to the timescales involved in 

AD. As it is visible from figure 7, there comes a point after n 

simulation steps that it is unavoidable for the network to 

remain connected and is broken down into two distinct parts. 

From a physiological point of view, very progressed 

Alzheimer’s disease results in Schizofrenia which is a 

disconnection syndrome as well. Therefore taking the average 

time that it takes for patients to reach this advanced state can 

provide a hint of the time scale of the simulations. Although 

the Cycle and Motif spectra are two good choices to monitor 

the structural changes of a network, these metrics are not 

without some negative remarks. The primary of these being the 

high computational load for counting these elementary 

structures in a graph. For example, the calculation of the cycle 

and motif spectra for the case of a Small World network with 

N=90, 6=k takes about 34 seconds in MATLAB and that is 

to produce only one iteration. Future recoding of the 

algorithms in more efficiently compiled code is expected to 

increase the speed of execution for the sizes of networks 

involved in this paper.  



 

 

 

V. CONCLUSION 

This paper has demonstrated the rather low sensitivity of the 

most commonly used metrics for analyzing the structure of 

functional brain networks when applied to a framework of 

serial data collection for the early detection of Alzheimer’s 

disease. Furthermore two new metrics were proposed that 

appear to be more sensitive to subtle changes of network 

structure. 
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