
Efficient Implementation of Biomedical Hardware Using Open Source
Descriptions and Behavioral Synthesis

George Economakos, Member, IEEE

Abstract— Medical diagnostics are changing rapidly, aided by
a new generation of portable equipment and handheld devices
that can be carried to the patient’s bedside. Processing solutions
for such equipment must offer high performance, low power
consumption and also, minimize board space and component
counts. Such a multi-objective optimization can be performed
with behavioral hardware synthesis, offering design quality
with significantly reduced design time. In this paper, open
source code of a QRS detection algorithm is implemented in
hardware using an advanced behavioral synthesis framework.
Experimental results show that with this approach performance
improvements are introduced with a fraction of design time,
reducing dramatically time-to-market for modern diagnostic
devices.

I. INTRODUCTION

Advances of Information and Communication Technolo-
gies (ICT) in the health sector are changing rapidly the
way medical diagnostics are delivered today. New, small
size, low power and improved efficiency integrated circuits
can be manufactured. The communication infrastructure can
connect previously isolated or abandoned areas with a wealth
of information flow. As a consequence, a new generation of
portable, hand-held, wearable or implantable equipment has
emerged that can follow the patient in different geographic
locations and through different activities.

Components designed to fit in this increasingly perva-
sive sensing network, offering higher processing power and
the ability to transfer larger amounts of information more
quickly, should offer advanced characteristics. In terms of
area, they should be small enough to be carried away.
In terms of processing power, they should be efficient to
deliver computation speed and advanced to cover demanding
applications. In terms of power consumption, they should
save energy to increase battery life and thus availability time
as well. So, their design should follow a multi-objective
optimization path, from concept to implementation.

Such a multi-objective and much promising design tech-
nique is Behavioral or High-Level Synthesis (HLS) [4], [5].
HLS raises the level of design abstraction by translating
system level algorithmic descriptions into Register Transfer
Level (RTL) architectural descriptions. Although HLS has
been a research topic for more than twenty years, it has
recently gained industrial acceptance with the introduction
of hardware description languages like VHDL and Verilog

Manuscript received July 5, 2008.
G. Economakos is with the School of Electrical and Computer

Engineering, Division of Computer Science, National Technical Uni-
versity of Athens, Heroon Polytechniou 9, 15780 Zografou, Greece
geconom@microlab.ntua.gr

in design flows, and the availability of efficient synthesis
methods and tools, that enable the translation of RTL de-
signs into optimized gate level implementations. The main
expectations from HLS is support for better management
of the design complexity and reduction of the design cycle
all together, breaking the trend to compromise evaluation of
various design implementation options. Designing at higher
levels of abstraction allows a better coping with the system
design complexity, to verify earlier in the design process and
to increase code reuse.

The design of medical diagnostic environments has em-
ployed computer analysis of vital biosignals in many cases
during the last years. However, new companies are constantly
emerging and applying new technologies, such as PDAs,
in an effort to make smaller and cheaper systems. Each
new company must implement their own analysis algorithms,
duplicating much of the the efforts of every other company.
Similarly, researchers who need to explore new diagnostic
methods, must also implement their own versions of basic
analysis functions. Thirty years of research on computer
analysis of vital signals has produced a great many methods
for detecting and classifying characteristic patterns, but there
is still a significant effort required to go from theory to
implementation.

In an effort to reduce this industry and research wide
duplication of effort, open source analysis software [7], [1]
has been proposed. C functions have been developed and
made widely available, that implement the most basic ECG
analysis operations, detection and classification of individual
beats. Using this open source software new companies are
able to bring reliable systems to market more quickly, and
researchers are able to spend more time exploring new diag-
nostic techniques rather than implementing beat detectors.

In this paper, this open source software is passed through a
commercial HLS tool [12], to offer the same advantages in a
higher degree, for the design of modern, powerful embedded
medical diagnostic devices. Specifically, the development
time is greatly reduced (compared to other hardware design
techniques), implementation quality is comparable to manual
designs, code reuse is maximized, simulation time is reduced
and there is no need to hire a specialized hardware design
team (at least for prototype implementation). The resulting
hardware components can be used as stand alone or co-
processing elements in a System-on-Chip (SoC) architecture,
using appropriate interface components. Moreover, this ap-
proach is not limited to ECG analysis but can be applied to
any application for which an algorithmic C/C++ description
is available, open source or proprietary.

The rest of the paper is organized as follows. Section II is a
presentation of related research activities. Section III presents
details about the optimizations offered through HLS for the
design of diagnostic applications. Section IV gives results
from the conducted experiments and finally, section V is the
conclusion and the expected future extensions.

II. RELATED RESEARCH

Computer analysis of biosignal and especially the ECG
signal is not new [8], [14]. Recently, special purpose hard-
ware devices are proposed [2], [3], [9], [10], [13], [16], based
on the wide adoption of hardware description languages and
Field Programmable Gate Arrays (FPGAs).

More than half of the above referenced hardware imple-
mentations deal with new algorithms for ECG QRS detec-
tion. In [10] a wavelet based approach is presented, in [16]
mathematical morphological filtering is put to use while in
[2], [3] geometrical properties of a phase-space portrait are
exploited. All approaches present more than 99.50% sensi-
tivity of QRS detection on the MIT-BIH arrhythmia database
[11]. However, not many details about the methodologies and
the design decisions taken during hardware design are given.
In [2] a working frequency of 82MHz is reported while in
[10] the frequency reported is 73MHz. In [3] the device
presented in [2] is used as a coprocessor in an embedded
system with a general purpose microprocessor.

In the remaining two referenced implementations, a
circuit-aware presentation is given. In [13] comparisons are
given between implementations of different QRS detection
algorithms reaching an operating frequency of 34MHz. In [9]
a low power implementation, used for implantable devices is
presented. This final implementation is considered for fabri-
cation as an Application Specific Integrated Circuit (ASIC),
compared to the FPGA prototypes of all other cases. Also,
detailed power measurements are given instead of operating
frequencies.

Our approach is similar to the one in [13] but uses a
higher level of design abstraction offering reduced design
time and increased code reuse and overall productivity. The
results obtained are better in terms of operating frequency
and comparable to those given in [10], [2], [3], for the same
hardware implementation FPGA platform. The advantage of
our work is that more design alternatives are considered,
resulting in better design space exploration.

III. BEHAVIORAL OPTIMIZATIONS

Our design exploration methodology is based on a com-
mercial behavioral optimization tool, CatapultC synthesis
from Mentor Graphics [12], used also in the past for indus-
trial telecommunication applications [6]. As is well-known
(e.g. [4], [5]), HLS is the process of transforming a system
level behavioral specification of a digital system into an RTL
structural description implementing that behavior. HLS acts
upon the dataflow graph of an application with the following
basic behavioral transformations:

� Allocation: select the appropriate number of functional
units, storage units and interconnect units from available
component libraries.

� Scheduling: determine the sequence in which every
operation is executed.

� Binding: assign operations to functional units, values
to storage units and connect these components to cover
the entire datapath.

These transformations are related to each other and no
problem can be solved without considering the others. More-
over, each problem is known to be NP-hard making exact
solutions impractical and thus, different practical heuristics
have been proposed and applied over the past twenty years.

Recently, there has been a universal acceptance of hard-
ware description languages like VHDL and Verilog in design
flows mainly due to the availability of efficient synthe-
sis methods and tools, that enable the translation of RTL
designs into optimized gate-level implementations. Many
expect that the same approach could be effectively adapted
at higher levels of abstraction. In the emerging System-on-
Chip (SoC) context, the traditional IC design methodology
relying on EDA tools used in a two stages design flow - a
VHDL/Verilog RTL specification, followed by logical and
physical synthesis - is indeed no more suitable. Thus, actual
complex SoCs need new system level tools in order to raise
the specification abstraction level up to the algorithmic /
behavioral one. Languages like C/C++/SystemC offer high
abstraction levels. However, in order to provide the designers
with an efficient automated path to implementation, new high
level synthesis tools are required.

The main expectations from the system design teams con-
cern both methods and tools supporting better management
of the design complexity and reduction of the design cycle
all together, breaking the trend to compromise evaluation of
various design implementation options. Designing at higher
levels of abstraction is an obvious way as it allows a better
coping with the system design complexity, to verify earlier
in the design process and to increase code reuse.

CatapultC takes as input a functional description of an
algorithm in C or System C and produces a VHDL RTL de-
scription of a logic circuit, which implements this algorithm.
In particular, CatapultC can be used for obtaining optimized
designs, because it considers several alternative implementa-
tions of the algorithm and selects one or more among them
according to user-specified criteria. These criteria may have
to do with performance measures, resource usage constraints,
or other characteristics of the resulting circuit. The program
also contains a number of visual tools for graphical repre-
sentation, analysis, comparison and evaluation of the results.

CatapultC synthesis is an industrial class HLS approach
that raises the level of abstraction by clearly separating al-
gorithmic function from the actual architecture to implement
it in hardware (interface cycle timing, etc.). The inputs to
the CatapultC are (a) the algorithmic specification expressed
in sequential, ANSI-standard C/C++ or SystemC and (b) a
set of directives which define the hardware architecture. The
clear separation of function and architecture allows the input

source to remain independent of interface and performance
requirements and independent of the FPGA target technol-
ogy. This separation provides important benefits.

� The source is concise, the easiest to write, maintain,
and debug. Because of its high-level of abstraction,
its behavior can be simulated at much higher speeds
(X10000 faster) than RTL, cycle accurate, or traditional
behavioral-level specifications.

� The source can be leveraged as algorithmic intellectual
property (IP) that may be targeted for various applica-
tions and FPGA technologies.

� Obtaining a new architecture is a matter of changing
architectural constraints during synthesis. This reduces
the risk of prolonged manual recoding of the RTL
to address last-minute changes in requirements or to
address timing closure or to satisfy power and area
budgets.

� By avoiding manual coding of the architecture in the
source, functional bugs that are common when coding
RTL are also avoided. It is estimated that 60% of all
bugs are introduced when writing RTL. The importance
of avoiding such bugs cannot be overstated.

Optimization in CatapultC is performed with a number
of algorithmic transformations in cooperation with the basic
HLS transformations of allocation, scheduling and binding.
Some of them are applied in all cases by the tool, like dead
code elimination or common subexpression elimination, and
others are applied under user selection. A selection of the
most widely used optimizations are the following:

� Speculative Execution: This optimization analyzes
conditional logic (such as if-else) in the design in order
to reduce latency. It analyzes all conditional branches
in order to find operations that are not dependent on the
condition, and therefore can be scheduled in a different
clock cycle.

� Share Mutually-Exclusive Components: This opti-
mization allows components to be shared by more than
one operation if their use is mutually exclusive.

� Automatically Re-Allocate Components: Re-allocates
a component if it causes a smaller area. This optimiza-
tion is performed if a smaller component is available
that meets timing, or if re-allocating the component re-
sults in more sharing. Multi-function components, such
as add-subs, will also be targeted by this optimization.

� Assignment Overhead: Specify the percent of the
clock period that will not be used by sharing and re-
allocation. This constraint can be used to reserve some
of the clock period for routing delay in the back-end
flow. The value can be a negative number.

� Safe FSM: This optimization enables support for safe
FSM flows. When enabled, CatapultC will allow for
a default state that is not reachable from other states
during RTL simulation. The default state will uncondi-
tionally set the state to the first state in the FSM or the
reset state, if such a state exists.

� Use Old Scheduling and Allocation Algorithms: This

optimization option is used to switch between a new
combined allocation and scheduling algorithm and an
older separate scheduler. The new scheduler can reduce
area on many designs because it is able to change the
type and number of allocated components while the
design is being scheduled.

A major part of the optimization performed by CatapultC
is done in loops, nested or not. This is due to the fact
that loops are the areas of an algorithm that require more
processing time and thus, any optimization applied to them
can have a drastic effect in the final implementation. Such
loop transformations are:

� Loop iterations: Loop iterations refers to the number
of times the loop runs before it exits. The user can
constrain the number of loop iterations if the number
estimated by CatapultC is not satisfactory.

� Loop unrolling: Loop unrolling refers to the number
of times to copy the loop body. After the loop iterations
have been determined, the loop is unrolled based on the
unrolling constraints.

� Loop merging: Loop merging is a technique used to
reduce latency and area consumption in a design, by
allowing parallel execution, where possible, of loops
that would normally execute in series.

� Loop pipelining: Loop pipelining is how often to start
the next iteration of the loop. After loop unrolling and
several other transformations are complete, the sched-
uler uses the pipelining constraints to build a pipelined
loop.

Another powerful optimization option in CatapultC is the
way to handle hierarchical designs, that is, designs that
have more than one C function in their specification. For
designs that have such a structure, the user must designate
which functions are the entry points of each hierarchical
block. Every function will have one of the following settings:
Top, Block, or Inline. One function must be designated
Top, meaning the toplevel block for the entire design. The
entry function for any sub-block is designated a Block. All
other functions are designated Inline. CatapultC generates
hardware for the top level block and any function called
by it recursively, either as sub-blocks or as an inline code
substitutions. The default behavior is to allow all functions to
be inlined. This allows the maximum level of optimization,
but it will also increase runtime. This happens because,
each function designated as a sub-block, only maps to one
block of hierarchy, regardless of the number of times the
function is called. This may lead to designs that do not
function at the required performance. On the contrary, each
function designated as inline is substituted in all places that
is called and is optimized in all these places along with all
other neighboring code, leading to more efficient but time
consuming overall optimization.

IV. EXPERIMENTAL RESULTS

In order to evaluate HLS design methodologies and op-
timizations for the development of embedded diagnostic

devices, we used an open source software implementation [1]
of a classical QRS detection algorithm. The implementation
follows the digital filtering approach presented in [8], which
applies low-pass filtering, high-pass filtering, derivation and
averaging to the input signal in order to isolate QRS com-
plexes. The selection of the specific application is not deter-
mined by our approach, which can easily be applied to other
algorithms implemented in behavioral C/C++ code. However,
its availability as open source code make it available to every
researcher or company involved in the field, which gives a
clear design time acceleration for the specific flow.

In [1], different implementations of the same basic algo-
rithm can be found. The first, called QRSDET1 in the exper-
imental results presented in this subsection, uses a median
filter to find the average of the ECG signal over a period
of 80 ms. This solution presents QRS detection sensitivities
near 99.7% and QRS detection predictivities near 99.8%.
The second, called QRSDET2, uses a mean filter which is
much for efficient in both software and hardware implemen-
tations. Moreover, it improves QRS detection sensitivities
to 99.8% while QRS detection predictivities are unaffected.
The third, called QRSDET3, is generated from QRSDET2
after eliminating a search back technique presented in [7],
which reconsiders previous samples if a QRS complex has
not been found within a 1.5 R-to-R time interval. In this
case, QRS detection sensitivities and positive predictivities
drop to near 99.7%, which is quite acceptable for diagnostic
reasons, related to the performance improvements offered.
The final implementation, QRSDET4, ignores all peaks for
200ms following a QRS detection that may lead to large P
waves to be detected as QRS complexes and the following
QRS complex (within 200ms) to be ignored. The algorithm
of QRSDET4 is simpler and faster but the QRS detection
sensitivities drop to 99.2% and the predictivities to 99.5%.

For the hardware implementation of the proposed algo-
rithms we have used two types of behavioral transformations:
loop unrolling and pipelining. Loop unrolling exposes more
algorithmic constructs to the HLS tool (more sentences),
resulting in more optimization. Pipelining forces the resulting
implementation to run at the specified throughput frequency.
In other words, the generated circuit is forced to produce
new outputs with the specified frequency, regardless of the
overall time needed for all computations. When required,
appropriate registers are inserted to hold internal values of
the pipeline architecture. In CatapultC, both transformations
are selected through the GUI by pressing buttons and in-
serting appropriate values (i.e. pipeline interval), or through
environment variables.

The summary of all conducted experiments is given in
table I. The first column of table I shows the implemented
algorithm. The second shows the optimizations applied in
each case. These are either a full unroll of all loop iterations
for loops with known bonds, or a partial unroll of 2 loop
iterations in the case of the median filter that has unknown
bounds, or the pipeline interval forced on the output of
the generated architecture. The third column shows the
clock frequency of the device used in each experiment. For

Clock Throughput
Algorithm Optimizations Frequency Frequency Utilization
QRSDET1 None 100MHz 0.1MHz 27.45%
QRSDET1 Full unroll 100MHz 0.11MHz 56.60%
QRSDET1 Full unroll 100MHz 0.19MHz 62.36%

2xPart. unroll
QRSDET1 None 200MHz 0.09MHz 28.80%
QRSDET1 Full unroll 200MHz 0.099MHz 29.70%
QRSDET1 Full unroll 200MHz 0.18MHz 30.13%

2xPart. unroll
QRSDET1 None 400MHz 0.11MHz 29.44%
QRSDET1 Full unroll 400MHz 0.18MHz 60.39%
QRSDET1 Full unroll 400MHz 0.25MHz 67.26%

2xPart. unroll
QRSDET2 None 100MHz 0.47MHz 34.43%
QRSDET2 Full unroll 100MHz 1.01MHz 50.32%
QRSDET2 Full unroll 100MHz 5MHz 58.94%

Pipeline 20
QRSDET2 Full unroll 100MHz 20MHz 85.93%

Pipeline 5
QRSDET2 None 200MHz 0.50MHz 27.15%
QRSDET2 Full unroll 200MHz 1.47MHz 44.10%
QRSDET2 Full unroll 200MHz 10MHz 61.12%

Pipeline 20
QRSDET2 Full unroll 200MHz 20MHz 69.89%

Pipeline 10
QRSDET2 None 400MHz 0.58MHz 26.65%
QRSDET2 Full unroll 400MHz 1.15MHz 46.04%
QRSDET2 Full unroll 400MHz 13.33MHz 79.17%

Pipeline 30
QRSDET3 None 100MHz 0.46MHz 22.04%
QRSDET3 Full unroll 100MHz 1.16MHz 46.56%
QRSDET3 Full unroll 100MHz 33.33MHz 99.46%

Pipeline 3
QRSDET3 None 200MHz 0.61MHz 23.93%
QRSDET3 Full unroll 200MHz 1.57MHz 39.27%
QRSDET3 Full unroll 200MHz 28.57MHz 88.09%

Pipeline 7
QRSDET3 Full unroll 200MHz 50MHz 90.67%

Pipeline 4
QRSDET3 None 400MHz 0.71MHz 24.06%
QRSDET3 Full unroll 400MHz 1.24MHz 41.49%
QRSDET3 Full unroll 400MHz 20MHz 65.89%

Pipeline 20
QRSDET3 Full unroll 400MHz 23.52MHz 69.67%

Pipeline 17
QRSDET3 Full unroll 400MHz 80MHz 97.32%

Pipeline 5
QRSDET4 None 100MHz 0.46MHz 21.22%
QRSDET4 Full unroll 100MHz 1.14MHz 36.19%
QRSDET4 Full unroll 100MHz 20MHz 79.56%

Pipeline 5
QRSDET4 Full unroll 100MHz 33.33MHz 98.73%

Pipeline 3
QRSDET4 None 200MHz 0.61MHz 23.07%
QRSDET4 Full unroll 200MHz 1.6MHz 38.04%
QRSDET4 Full unroll 200MHz 28.57MHz 69.59%

Pipeline 7
QRSDET4 Full unroll 200MHz 66.66MHz 89.71%

Pipeline 3
QRSDET4 None 400MHz 0.72MHz 22.22%
QRSDET4 Full unroll 400MHz 1.6MHz 37.19%
QRSDET4 Full unroll 400MHz 26.66MHz 64.59%

Pipeline 15
QRSDET4 Full unroll 400MHz 30.76MHz 68.41%

Pipeline 13
QRSDET4 Full unroll 400MHz 100MHz 95.41%

Pipeline 4

TABLE I
QRS DETECTION IMPLEMENTATIONS THROUGH HLS

comparison reasons, this device is an FPGA of the Virtex-
II Pro device family [15] from Xilinx (XC2VP30FF896-
7) in all cases. The fourth column shows the throughput
frequency of the generated hardware device and is related
to the selected pipeline interval. Finally, the fifth column
shows the percentage of the overall device resources (logic
cells, flip-flops, DSP blocks, memory, IO) dedicated for each
implementation.

As it is shown in table I, the QRSDET4 algorithm gives
better results both in terms of speed and area. This is
expected as QRSDET4 involves less comparisons to select a
QRS peak. Moreover, QRSDET4, QRSDET3 and QRSDET2
use the median filter to find the moving average, which
is simpler in implementation than the mean filter used in
QRSDET1, as it has already been said. If quality of results
is also considered, QRSDET3 can be considered the most
efficient implementation. Another general observation from
table I is that more advanced implementations require more
resources, as expected. Also, the exact same optimization
sets cannot be applied as the clock frequency is raised.
This happens because CatapultC is forced to used different
components with faster response time, which may not be
able to be part of a very dense pipeline architecture. The
optimization combinations presented in table I are only the
ones that gave correct output and not all that were tested.

The implementations for the QRSDET1 detection algo-
rithm cannot be pipelined because of the median filter which
has an unknown iteration bound (at least in its implemen-
tation in [1]) and includes inter-iteration dependencies that
cause problems to pipelining. From the other three detection
algorithms, implementations with lower clock frequencies
can be pipelined more easily because there are less oppor-
tunities for implementation resources when using high clock
building blocks. However, the increased clock frequency
compensates for that and the final throughput frequency can
be drastically reduced in these cases also (not as much as
the pipelined implementations though). Another part that
creates problems in pipelining is the coding style used to
initialize all internal filter registers. Loops with inter-iteration
dependencies are also used there, even though the iteration
bounds are known. However, in order not to change the
characteristics of each algorithm no modifications to the code
found in [1] were introduced. Modifications improving HLS
performance may be introduced in a future version of this
work.

For almost two times the experiments presented in table
I (the ones that gave correct output and the ones that
did not), design time was approximately one week using
a Pentium 4 3GHz Linux workstation. With this effort,
the best result obtained was the one in the last row of
table I, operating at 400MHz and producing new outputs
at 100MHz, using almost the entire FPGA device. Other
interesting implementations are shown in rows 13, 17, 23,
26, 27, 30, 31, 32, 35, 36, 39, 40, 43 and 44. All other
implementations are by no means useless however. Even
an implementation with 100KHz throughput frequency is
more than enough for the ECG signal which may reach

at most 300Hz and its sampling rate most of the times
may be a little more higher than 1KHz. However, in an
embedded SoC environment burst mode computations may
be required at specific time intervals. Then, more advanced
implementations may be selected. Another advantage of low
speed implementations is that they use a small portion of
the FPGA device, leaving room for other functionality to be
implemented on the same fabric.

For another view of the experimental results, figure 1
shows the throughput frequency (Y axis) against FPGA
utilization percentage (X axis) for all implemented designs.
Note that all data is sorted and there is no link to rows of
table I.

Figure 1 shows that QRSDET4 gives better results but
what is more interesting is the high peaks in the QRSDET4
and QRSDET3 lines. The peaks show that there exist local
maximum values in throughput frequency that are not max-
imum in resource utilization. This is the advantage of using
HLS as a synthesis technique. Such cases in the design space
can be easily spotted and best implementation (with respect
to user constraints) can be selected. In the previous case, if
we choose the solution that occupies most of the FPGA area,
expecting it to be more advanced, we lose in performance.
Diagrams of this type (in fact many different styles) are
presented during the design process through the GUI of
CatapultC to help the designer choose the best solution.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

HLS has been a design methodology and a hot research
topic for the past twenty years. The same has happened
to computer assisted biosignal detection and classification.
Recently, there has been a universal acceptance of hardware
description languages like VHDL and Verilog in design
flows mainly due to the availability of efficient synthesis
methods and tools that enable the translation of RTL designs
into optimized gate-level implementations. On the other
hand, the number of medical diagnostic applications and
devices is continuously increasing with open source software
implementations offered as a good starting point to further
accelerate research and development. These two fields can
be combined and advances in design through HLS can be
put to use for the design of efficient devices, offering higher
processing power and the ability to transfer larger amounts
of information more quickly. The main expectations from
this combination are support for better management of the
design complexity and reduction of the design cycle all
together, breaking the trend to compromise evaluation of
various design implementation options. Designing at higher
levels of abstraction allows a better coping with the system
design complexity, to verify earlier in the design process and
to increase code reuse.

B. Future Works

Eventhough extensive experimentation has been performed
in the current work to support the combination of HLS and
computer assisted biosignal manipulation applications, there

-1

19

39

59

79

99

20 30 40 50 60 70 80 90 100

Utilization %

Th
ro

ug
hp

ut
 M

H
z

QRSDET1 QRSDET2 QRSDET3 QRSDET4

Fig. 1. QRS detection hardware designs

are still a lot that can be done. First of all, the same approach
can be applied to other biosignals except the ECG or other
applications for ECG, like classification, or other algorithms
for QRS detection. Another step would be to install the
generated hardware devices as coprocessors in an embedded
SoC platform, to build more advanced systems offering
advanced functionality. Finally, it would be interesting to
introduce power optimization to the whole flow aiming at
implantable and portable devices.

REFERENCES

[1] Open source arrhythmia detection software. http://www.
eplimited.com/software.htm.

[2] M. Cvikl, F. Jager, and A. Zemva. Hardware implementation of
a modified delay-coordinate mapping-based qrs complex detection
algorithm. EURASIP Journal on Advances in Signal Processing,
2007(1), 2007.

[3] M. Cvikl and A. Zemva. Fpga-based system for ecg beat detection
and classification. In 11th Mediterranean Conference on Medical and
Biomedical Engineering and Computing, pages 66–69. IFMBE, 2007.

[4] G. De Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[5] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-Level Synthesis. Kluwer
Academic Publishers, 1992.

[6] Y. Guo, D. McCain, J. R. Cavallaro, and A. Takach. Rapid industrial
prototyping and soc design of 3g/4g wireless systems using an hls
methodology. EURASIP Journal on Embedded Systems, 2006(1):18–
42, 2006.

[7] P. Hamilton. Open source ecg analysis. In Computers in Cardiology,
pages 101–104. IEEE, 2002.

[8] P. S. Hamilton and W. J. Tompkins. Quantitative investigation of
qrs detection rules using the mit/bih arrhythmia database. IEEE
Transactions on Biomedical Engineering, 33(12):1157–1165, 1986.

[9] T.-T. Hoang, J.-P. Son, Y.-R. Kang, C.-R. Kim, H.-Y. Chung, and S.-W.
Kim. A low complexity, low power, programmable qrs detector based
on wavelet transform for implantable pacemaker ic. In International
SOC Conference, pages 160–163. IEEE, 2006.

[10] K. Kuzume, K. Niijima, and S. Takano. Fpga-based lifting wavelet pro-
cessor for real-time signal detection. Signal Processing, 84(10):1931–
1940, 2004.

[11] R. G. Mark, P. S. Schluter, G. B. Moody, P. Devlin, and D. Chernoff.
An annotated ecg database for evaluating arrhythmia detectors. In
4th Engineering in Medicine and Biology Society Conference, pages
205–210. IEEE, 1982.

[12] Mentor Graphics. Catapult Synthesis Users and Reference Manual,
2007.

[13] M. M. Peiro, F. Ballester, G. Paya, J. Belenguer, R. Colom, and
R. Gadea. Fpga custom dsp for ecg signal analysis and compres-
sion. In International Conference on Field Programmable Logic and
Applications, pages 954–958. IEEE, 2004.

[14] W. J. Tompkins. Biomedical Digital Signal Processing: C-Language
Examples and Laboratory Experiments for the IBM PC. Prentice Hall,
1995.

[15] Xilinx. Virtex-II Pro and Virtex-II Pro X FPGA User Guide, 2007.
[16] F. Zhang, J. Tan, and Y. Lian. An effective qrs detection algorithm

for wearable ecg in body area network. In Biomedical Circuits and
Systems Conference, pages 195–198. IEEE, 2007.

