
The influence of different bone remodeling equations on a 2-D vertebra 
model in the final bone density distribution

 
Abstract—The phenomenon of bone remodeling is a complex 
biological process which is dependent on genetic, hormonal, 
metabolic and age-related. Being familiar with the mechanisms 
of bone remodeling is of great importance for implant design 
and metabolic diseases such as osteoporosis, since it enables 
monitoring of bone tissue. The bone remodeling phenomenon 
can be described mathematically and simulated in a computer 
model, integrated with the finite element method. Important 
parameters in such a model are the geometry and the 
mechanical loading caused by everyday activities and the bone 
remodeling equation itself. Therefore, this paper deals with the 
biomechanical modeling of the bone remodeling process on a 
simplified geometry of a fifth lumbar vertebra (L5). A baseline 
bone remodeling equation, retrieved in the literature has been 
used, and the values of its coefficients have been varied in order 
to evaluate their effect on the description of the bone 
remodeling phenomenon. This way different bone remodeling 
conditions have been simulated. Likewise, two nonlinearities, 
i.e. the bone remodeling coefficient and the order of non-linear 
remodeling equation have been introduced. The influence of 
each non-linearity was investigated and its mechanical 
implications have been reported.  

I. INTRODUCTION 
HE first researcher that observed the phenomenon of 
bone remodeling was Wolff when, in the late 1890’s, 

observed that trabeculae in the proximal femur have the 
tendency to align with the principal stress trajectories. 
Formulating what is known today as “Wolff’s law”, he 
suggested that bone is created in areas that need to be 
strengthened and resorbed where bone is not needed.  

Until now a lot of research is done on this hypothesis and 
two types of bone remodeling have been observed; “internal 
remodeling” that leads to alterations of the internal structure 
of bone in general and the “external” remodeling that leads 
to changes of the external geometry of bone. The internal 
remodeling that is defined as change of bone density could 
be described as modification in the value of the elastic 
modulus of the cancellous bone [1]. 

The exact mechanical stimulus of bone remodeling is still 
under investigation. In different theories it was assumed that 
the mechanical key stimulus initiating bone remodeling 
processes are either the mechanical stresses or the strains 
(i.e. normal and shear strains) [2-4]. Brown et al. [5] 
conducted a combined experimental-finite element modeling 
study to select the specific mechanical parameters 
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responsible for initiating the adaptive responses of bone 
using an animal model. According to recent studies, 
however, bone remodeling is controlled predominantly 
by strains rather than stresses [6]. 

Bone remodeling equations have been treated as site 
specific and there are some studies that concern the 
specific site of the spine. One of these studies was 
conducted by Goel et al. [7] and demonstrated that the 
strain energy density in the vertebral cortex and 
cancellous bone induce the remodeling process. 

In the present study internal bone remodeling is 
studied and strain energy density is considered to be the 
regulatory parameter. Different hypothesis for the bone 
remodeling equation are tested in two different loading 
conditions of a 2D finite element model simulating the 
fifth lumbar vertebra of a young and an old male, 
respectively. 

II. MATERIALS & METHODS 

A. Bone Remodeling Equation 
The basic bone remodeling equation used, is the 

differential equation (1) proposed by Weinans in 1992 
[8].  
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where ρ is the bone mineral density, B is the bone 
remodeling coefficient, U is the strain energy density at 
the centroid of the finite element and k is the reference 
stimulus value. This value stands for the borderline 
quotient of U/ρ that below this, no bone remodeling 
takes place. 

Bone remodeling in each finite element is considered 

to be converged when the equation 0d
dt
ρ
=  is satisfied, 

which happens when one or more of the following three 
conditions are satisfied: (i) reached preset reference 
stimulus value k of ratio between strain energy density 
and density of bone tissue, (ii) reached density of 
cortical bone tissue ρ = ρmax, (iii) complete resorbtion of 
bone tissue from finite element ρ = ρmin. Reaching one 
of the bone remodeling equilibrium conditions is 
achieved by the constant change in the density of bone 
tissue in each finite element. As density of the cortical 
bone the value of 1.74 g/cm3 has been considered, while 
for the minimum value that stands for the lack of bone, 
the value 0.01 g/cm3 has been considered. 

According to Weinans [8] in (1) the coefficients k and 

B have the values of 0.25 J/g and 
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Investigating the influence of the bone remodeling 
coefficient the following equations are investigated 
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In the literature [9] the insertion of two kinds of non-
linearities in the differential equation of bone remodeling 
has been proposed. 

The first one, concerns the insertion of the exponent a on 

the term U
kρ ⋅

. McNamara proposed the value of 2.25 which 

indicated a satisfactory compromise with reality [10]. The 
equations that are going to be investigated having embodied 
the aforementioned nonlinearity are the following:  
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The second non-lineartity proposed, concerns the 
transformation of the constant bone remodeling coefficient B 
in (1) to an exponentially changing versus time, coefficient 
Β(t). The correlation between time t and the coefficient B 
proposed in (9) is in the form of: 

( ) 0.002
0( ) t

T TB t B B e B= − +   (6) 
where B0 and BT are constants. The equations that embed 
this nonlinearity and are going to be investigated are the 
following: 
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Finally a change in the correlation between time and the 
bone remodeling coefficient is proposed and the last two 
equations are investigated: 
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For the numerical solution of the differential equation the 
method of Adams-Bashforth of the fourth order has been 
used. Adams – Bashforth is not a self starting method so for 
the first three time steps Runge-Kutta of the fourth order has 
been used. The same numerical solution has been also 
proposed by Chen et al. [11]. 

Schematically the computational flow chart of bone 
remodeling is shown in Fig. 1. 

Starting from the physical model, the geometrical model is 
extracted. Further discretization is applied with the use of 
the finite element (FE) method for the mechanical analysis 
of the vertebra, and the boundary conditions are applied. 
Then the mechanical properties of bone are set, i.e. Poisson 
ratio and Young’s modulus, and the FE model is solved. 

 
Fig. 1. Bone remodeling flow chart 

The values of the strain energy density are inserted in 
the differential equation of the bone remodeling 
procedure and new bone density values are produced. 
These new values are used for the calculation of the new 
values of the elastic properties and so on until the limit 
of the iterations is reached. 

B. Mechanical Properties of bone 
Bone density that appears in the bone remodeling 

equation is directly connected to the Young’s modulus 
of the bone. A lot of research is done on this field. In the 
present paper the relationship between bone density and 
Young’s modulus is considered to be 

2100E ρ= ⋅   (11)  
as mentioned  in [9] and [12]. As far as the Poisson’s 
ratio is considered it is set to 0.3  

C. Finite Element Model 
The remodeling equations have been applied in a 2D 

FE model of a fifth lumbar vertebra. The geometry of 
the vertebra is the same as used in [9] and [12] and its 
dimensions come from the observation of the external 
shape and internal structure of the cross-section of a 
vertebra. The vertebral body height is 24.9mm and the 
width of its upper endplate is equal to 43.9mm while the 
width of its lower endplate is 49.0mm. For the FE 
analysis the ANSYS v11.0 software has been used. Both 
the FE analysis and the numerical solution of the 
differential equation have been programmed in APDL, 
the programming language of ANSYS software. 

X
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Z

Fig. 2. 2D model used to simulate the crossection of a typical third 
lumbar vertebra 

The FE model is shown in Fig. 2. For the 
discretization of the 2D model the 2D plane stress FE 
Plane42 from ANSYS FE library have been used. The 
final mesh consisted of 7700 finite elements and had 
15762 degrees of freedom in total. 
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D. Boundary Conditions 
As far as the boundary conditions are concerned the two 

extreme nodes of the lower endplate are considered 
articulated, while on the upper endplate two typical loading 
has been considered. 

For the young male the maximum pressure applied on the 
edges of the upper endplate is 4.8MPa and the minimum on 
the middle is 1.6MPa. Likewise the maximum pressure on 
the edges of the lower endplate is 4.5MPa while the 

minimum on the middle is 1.3MPa. The total magnitude 
of the force that is applied on the vertebra for both the 
upper and the lower endplate is equal to -117.3Ν. 

For the elderly male the maximum pressure that is 
applied on the middle of the upper and lower endplate 
has the value of 2.07MPa and 1.95MPa respectively, 
while the minimum pressure applied on the edges of 
both endplates has the value of 1.12MPa and 0.93MPa 
respectively. The total pressure applied in the form of 
perpendicular force on the vertebra equals to -41.87Ν.  
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(a) (b) 

Fig. 3. Loading of the (a) upper and (b) lower endplate for both the young and the elderly male 

In Fig. 3 (a) the loading profile for the upper endplate is 
shown for both the young and the old male, while the same 
thing for the lower endplate is shown in Fig. 3. (b). 

III. RESULTS 
First of all time step magnitude has been investigated. 

Time steps between 0.03 that is proposed in the literature 
and 0.06 were tested. The results in both cases were the 
same so the value of 0.06 was adopted. For every bone 

remodeling equation 1400 iterations were performed. 
This corresponds to time equal to 84 time units. In all 
the runs the starting value for bone density was equal to 
0.8 g/cm3. 

A. Final Bone Density Distribution 
In Fig. 4. (a) that follows, the final distribution of bone 

density is shown for bone remodeling equations (2-5) 
and (7-10) for the young male, while in Fig. 4 (b) the  
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Fig. 4. Final bone density distribution for the (a) young and (b) old male 

bone density distributions for the old male, are shown. 
In all the cases, vertical columns, that look like trabeculae 
are formed, and bone material has almost a continuum 
distribution on the upper and lower endplate. On the other 
hand the numbers of the vertical columns, as well as the 
bone density distributions are different depending on the 
loading condition that corresponds to age difference. 

Besides the final distribution of the bone density inside the 
2D vertebra in the literature some performance criteria for 
the bone remodeling procedure have been proposed. 
Therefore, for further evaluation of the different bone 
remodeling equations these criteria have been examined. 

B. Mass Criterion 
Using the FE method, and according to the bone 

remodeling equation, every finite element can only influence 
its own mass, and can result to its change. The mass criterion 
investigates whether the final outcome is close to real mass 
distribution of the vertebra and whether it is close to the 
optimized result of bone mass minimization. 

In Table I the final mass for each case is shown 
TABLE I 

FINAL MASS 

 Young Male Old Male 
(2) 365.38 262.98 

(3) 366.19 262.94 
(4) 368.85 285.72 
(5) 368.17 264.04 
(7) 365.38 262.98 
(8) 368.85 285.72 

(9) 365.38 263.23 
(10) 369.21 285.72 

In Fig. 5 (a) that follows the graph of the ratio of the 
final mass to the initial one is presented for all the 
equations with constant bone remodeling coefficient for 
the vertebra belonging to the young male, while in Fig. 
5. (b) is shown the graph of the same ratio for the bone 
remodeling equations with exponential bone remodeling 
coefficient. 
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Fig. 5. Ratio of the mass of each time step per initial mass for the vertebra that 

belong to the young male 



The fact that the initial mass for all equations is the same, 
since bone density is the same, needs to be stressed out. 
In Fig. 6 are shown the same ratios for the old aged vertebra 
for all bone remodeling equations. 
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Fig. 6. Ratio of the mass of each time step per initial mass for the vertebra 

that belong to the old male 

C. Stiffness Criterion 
Zhao and Hornby in 1998 [9] introduced the idea of a 

material efficiency indicator for the evaluation of a structure 
under the aspect of the structure with the maximum stiffness. 
They suggested that the average stiffness per unit volume 
could be used in order to conclude on how effectively the 
material is used. Extending this idea to biological materials 
this criterion could also be used in bone. Note that bone 

density is a value between 30.01g
cm (lack of bone) and 

31.74 g
cm (cortical bone). The total stiffness of a structure is 

proportional to the total work produced by all the external 
forces, consequently the stiffness indicator can be defined 
as: 
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where s
EW  is the total work produced from all the external 

forces acting on the structure and sM is the current mass of 
the structure. 

In Table II the value of the stiffness indicator is shown. 
TABLE II 

STIFFNESS INDICATOR 

 Young Male Old Male 
(2) 3.35E-06 7.03E-06 

(3) 3.35E-06 7.05E-06 
(4) 3.39E-06 6.60E-06 
(5) 3.39E-06 6.99E-06 

(7) 3.35E-06 7.03E-06 
(8) 3.39E-06 6.60E-06 

(9) 3.35E-06 7.07E-06 
(10) 3.41E-06 6.38E-06 

D. Cost Function 
The final criterion used for the evaluation of the bone 

remodeling equation is the value of the cost function. 
Function F is defined as:  

1
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∑   (11) 

where m is the number of the finite elements where the 
bone remodeling process still goes on. 

In Fig. 7 that follows the graph of the cost function for 
all the equations with (a) constant bone remodeling 
coefficient and (b) exponential bone remodeling 
coefficient is presented for the vertebra belonging to the 
young male. 
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Fig. 7. Convergence history for the vertebra that belongs to the young male 
In Fig. 8 are shown the same ratios for the vertebra 

belonging to the old male for all bone remodeling 
equations. 
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Fig. 8. Convergence history for the vertebra that belongs to the old male 

IV. DISCUSSION 
The discussion of the results is going to be on two levels. 

The first one deals with each loading condition alone and the 
second deals with the differences caused on the final 
outcome due to the different bone remodeling equation.  

As far as final bone density distribution on the young 
vertebra is concerned, is obvious that the use of different 
bone remodeling equation does not alter gravely the final 
bone density distribution on the same number of time units. 
The only alterations that can be observed are close to the 
lower endplate and on the lower level of the center columns. 
The same thing does not stand for the old vertebra. The use 
of equations (4), (8) and (10) leads to the development of 
parts with middle bone density in the space between the 
columns. The common characteristic of these equations is 
the use of the nonlinearity induced by the exponent α. The 
rest of the final distributions of bone density are the same 
with slight differences on the lower part of the columns.   

The use of mass criterion for both the young and the old 
vertebra proves that in all cases the ratio of the final mass to 
the initial one is of the same order. The difference lies on the 
iteration that this is reached. On the young vertebra, this 
value is reached quicker with the use of the equation (4) for 
the case of constant B and (8) for exponentially changing B 
versus time. It is important that the use of exponentially 
changing B leads to the same rate of decrease in mass 
regardless the nonlinearities. For the old male’s vertebra the 
equations with the quickest rate of decrease in mass are 
again (4) and (8). This leads to the conclusion that this 
nonlinearity affects the rate of mass decrease. 

The stiffness criterion proclaims that for the majority of 
equations the material is best used. The stiffness value is 
higher for the use of (10) for the young vertebra and for (9) 
for the old one meaning that in these cases the material is 
utilized in the best possible way. The common characteristic 
of these two equations is that B is exponentially changing 
versus time with a new scheme. Finally as far as the 
convergence criterion is concerned, it reveals that the use of 
the exponentially changing versus time B leads to the 
equilibrium after 200 iterations, while if B is constant the 
equilibrium is reached after 800 iterations, in all cases. 

V. CONCLUSIONS 
An important conclusion of this study is that the 

nonlinearity of the exponent a gravelly affects the behavior 
of a bone remodeling equation. Also it is important to 
observe that the change of the dependency of the bone 

remodeling coefficient versus time, in both cases leads 
to the distribution of maximum stiffness. 

Gathering all the above information is obvious that 
computational results alone are not enough to reach to a 
conclusion over which is the right bone remodeling 
equation, but on the other hand a computational work 
can be conclusive on how each coefficient affects a bone 
remodeling equation. Loading conditions are another 
factor that gravelly affects the way an equation 
influences the final outcome, since starting from a 
common geometry, the change of the loading alone 
leads to a completely different outcome in terms of 
distribution. 

An investigation of the above equations on a real three 
dimensional geometry of a vertebra with all the possible 
loading conditions, could lead to more conclusive results 
about the way an equation of such a type should be built. 
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