
  

  

Abstract—Understanding the primates’ visual system has 

been one of the challenging problems of different groups of 

scientists for years. Though many studies, from physiology and 

neuroscience to computer vision, are done on different aspects 

of visual processing in the cortex, a comprehensive 

computational model of visual cortex is still missing. We have 

implemented a computational model of object recognition in 

ventral visual pathway in our previous work. This hierarchical 

model covers visual areas V1/V2, V4/PIT, and AIT sending 

inputs to the Prefrontal Cortex (PFC) for categorization. To 

extend our model, in this work, we have added a simple model 

of motion detection in neurons of areas V1 and MT of the dorsal 

stream to our previous model. This has enabled the model to 

perform another principal function of the visual cortex, i.e., 

motion perception.  

I. INTRODUCTION 

T is confirmed that cells in different areas of the visual 

cortex are specialized for different types of visual 

information, such as motion, form, and color, and have 

different properties. Ungerleider and Mishkin (1982) showed 

that the visual information is processed in two separate 

pathways. The ventral pathway extends from V1 to inferior 

temporal cortex (IT), including V4, and is known to perform 

object recognition. The dorsal pathway begins in V1 and 

turns upward to the posterior parietal area, including the 

middle temporal area (MT) and is responsible for location 

and motion perception [1].  

However, some scientists believe that computational 

architecture of the cerebral cortex is very similar from one 

neocortical area to another, but the inputs to every cortical 

area is quite different. This idea is successfully used in 

motion analysis model of [2]. The object recognition model 

of [3] is also based on an extension of the organization of 

simple and complex cells in the striate cortex of the primates, 

proposed by Hubel and Wiesel (1968). 

Towards construction of a complete mathematical model 

of visual processing in the visual cortex, we combine 
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biologically motivated models of different visual cortical 

areas. First, the extended HMAX object recognition model 

[3] is implemented to simulate the function of neurons in 

areas V1/V2, V4/PIT, and AIT along the ventral pathway. 

Some enhancements and simplifications are done on the 

model to improve the processing time and performance of 

the model. In the next step, we add a simple model of motion 

detection in the areas V1 and MT to extend our model of 

visual cortex. In this work, only component direction 

selective cells are modeled using the energy model of [4]. 

For this part, we use parameters which are consistent with 

those defined for the object recognition model. 

Other object recognition systems are investigated in [3] 

and [5], but they all lack the simultaneous physiological 

plausibility and high performance, achieved by the extended 

HMAX model proposed in [3], [5], [6]. The fact that 

parameters in this model are not tuned to obtain the optimal 

performance, but are tuned to match the physiological 

properties of the neurons in the corresponding areas [5], [6], 

along with the high performance of model to input images of 

the real world, make it a solid frame to construct our 

inclusive model on it. Some works are done to add feedbacks 

and attention mechanisms to the HMAX model [7]. Though 

achieving good performance and decreasing the response 

latency, [7] uses only the V1 layer of the HMAX model, 

which makes it farther from the biological visual system. 

Considerable works are done on motion analysis in the 

cortex by Heeger, Movshon, Simoncelli and others. 

Movshon proposed a two stage hypothesis for the motion 

analysis by neurons in area MT [1], [8]. Some neurons in 

area V1, like most of the neurons in MT are component 

direction-selective, responding only to components of a 

pattern moving preferably perpendicular to their orientation 

axis [1], [9]. About 20% of the MT neurons are pattern 

direction-selective which compute the global motion of the 

object [1]. These cells receive inputs from the component 

cells of areas V1 and MT. In [8], both direction-selective 

cells in V1 and direction- and speed- (velocity) selective 

pattern cells of MT are modeled using a similar sequence of 

operators including: linear filtering, half-square rectification, 

and divisive normalization. The cascade model described in 

[9] is a relative model of [8] fitted to the responses of 

individual MT neurons. 

In this work, we do not address the binding problem, as 

the visual information is processed through separate paths, 

which receive separate types of inputs. In future work, we 

may use a common input for both processes.   
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II. MODEL IMPLEMENTATION 

Fig. 1 shows a block diagram of the proposed model along 

with the corresponding areas of each block in the visual 

cortex.  

A. Object recognition model of ventral pathway 

The object recognition model proposed in [3] is a feed-

forward hierarchical quantitative model of object recognition 

that accounts for the very first milliseconds of processing in 

the ventral stream of primate visual cortex. In its simplest 

form, the model has four layers: S1, C1, S2, and C2. The 

model extracts shift- and scale-invariant features from an 

input image and sends it to a trained classifier to decide 

about its object category. In this work, we have trained the 

model for two objects, but the model is tested on 101 object 

categories [3], [5]. Details of the implemented HMAX model 

are described in Appendix.  

Our investigations on the role of each C1 frequency band, 

shows that the existence of all the bands necessarily do not 

improve the classification performance. We have also 

investigated the effect of using different patch sizes to 

produce S2 RBF neuron centers. In general, features of 

intermediate sizes work better; because, compared to larger 

patches, they are more flexible in matching a greater number 

of inputs, and compared with smaller patches, they are more 

selective to the desired object [10]. To run the feature 

selection algorithm, we have used the first scale band of C1, 

corresponding to the first two scale bands of S1 cells. We 

have also executed the algorithm on the S2 features 

produced by using the second patch size (8×  8). 

1) Feature selection: Features in Layer S2 are chosen 

randomly from a set of positive images. As a result some 

features might not be useful for classification, and increases 

the response latency at the same time. To lessen these 

drawbacks we have applied a sequential backward feature 

selection algorithm to the randomly chosen prototypes of 

Layer S2. We have omitted 30% of the worst features from 

the primary set of 100 S2 neurons. This, in addition to 

reducing the processing time, has led to an increase in the 

classification performance. Other methods such as k-Means 

clustering were also examined to divide the S2 features in 

two useful and bad features. Due to the highly random 

characteristic of the features, no reasonable results were 

obtained. As the output values of the model are either 1 or 0 

(belonging or not belonging to an object category) training 

the RBF network is also not a practical method of improving 

the S2 prototypes. 

B. Motion detection model of dorsal pathway  

We have used the motion energy model of Adelson and 

Bergen [4], to provide our model with the ability of motion 

analysis. This model simulates the characteristic of some 

cells in area V1, and most of the cells in area MT of the 

dorsal pathway. These cells are component direction-

selective, showing response to motion in a specific direction 

[1]. Pattern direction-selective cells in the area MT, which 

are selective to the general motion of the object, receive 

input from the component direction-selective cells of V1 and 

MT.    

By now we have modeled V1 orientation-selective cells, 

having spatial receptive fields. We should now produce 

spatiotemporal receptive fields. These receptive fields are 

simply produced by multiplication of temporal and spatial 

impulse responses. These kinds of separable spatiotemporal 

responses are physiologically and psychophysically plausible 

[4]. The motion energy model implementation is described in 

the following stages: 

1) Spatial filters: We have used pairs of sine and cosine 

Gabor functions with the same properties used in the 

modeling of ventral stream as the spatial response of the 

cells. This is done in order to stay consistent with the object 

recognition model and its physiologically tuned parameters. 

Reference [4] has used the second and third Derivatives of 

Gaussian to produce a pair of quadrature spatial filters. 

Though a sine and cosine pair of Gabor functions are often 

considered as a quadrature pair, we have removed the DC 
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Fig. 2.  A quadrature pair of spatial Gabor filters with biologically 

tuned parameters. 

 
 
Fig. 1. Block diagram of the visual processing model. The 

corresponding visual areas of each part are included. 



  

component of the cosine Gabor function in order to produce 

a refined quadrature pair. Fig. 2 shows a sample quadarture 

pair of Gabor filters. Details of the Gabor function is 

described in Appendix. 

2) Temporal filters: we have used linear temporal filters 

introduced in [4], which are said to be plausible 

approximations to filters inferred psychophysically. These 

filters have the form of (1) where n takes values of 3 and 5. 

Temporal filters are actually weighting functions that 

combine the spatial responses of cells in the past to produce 

the response at the present moment.       
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3) Spatiotemporal Filters: These kind of spatiotemporal 

cell responses are produced by multiplying spatial and 

temporal filters with the above mentioned forms.  

4) Direction selective Spatiotemporal filters:  The filters 

illustrated in Fig. 5 are produced by summation and 

subtraction of the spatiotemporal filters of Fig. 4.  

Each quadrature pair of leftward and rightward filters 

operates on the spatiotemporal input. The outputs of filters in 

each pair are then squared and added to obtain the oriented 

energy in right and left direction as in Fig. 6 (c) and (d). To 

construct a unit that shows motion in both directions (an 

opponent energy unit), the outputs of the oriented energy 

modules are subtracted. In the output of an opponent energy 

unit, the light parts indicate the motion in rightwards and the 

dark parts show leftward motion as in Fig.6 (b).  

5) pattern motion selective cells: As the pattern direction-

selective model of Simoncelli-Heeger [8] is proved to be one 

of the best models which correctly matches the responses of 

a large fraction of cells in area MT [11], we are about to use 

a model based on [8] to make our system pattern motion 

sensitive. This architecture is biologically plausible and can 

compute velocity (both speed and direction). The final block 

in the MT box represents this part.   

By modeling direction-selective cells, and adding them to 

the V1 part of the model, we now have a more complete 

representation of the cells in area V1, which is proved to 

carry out both modes of computation i.e. MAX and energy 

model [12].   

III. EXPERIMENTS AND RESULTS 

A. Stimulus 

To test the object recognition model, we have used 

Motorbikes and Background datasets from the CalTech5 

image database available at: 

 http://www.robots.ox.ac.uk/~vgg/data/data-cats.html. 

Ten sets of randomly selected train and test images, 

including 90 (40 positive and 50 negative) and 100 (50 

positive and 50 negative) images respectively, were used and 

the classification performance was averaged over these sets. 

All images are inverted to grayscale and resized to 140 

pixels in height as in [3].  

The inputs to the motion sensitive model were 

spatiotemporal representations of moving bars or edges, such 

as those shown in Fig. 6 (a). 

B. Results 

The classification performance of the object recognition 

model with 16 S1 scales, 4 sizes of patches, and 100 S2 

features has been 96%. For two S1 scales, one size of patch 

(8×8), and selected S2 features, we have achieved the 

performance of 95% along with a considerable decrease in 

the processing time. Using similar parameters without S2 

feature selection, results in the classification performance of 

92%. 

Additional experiments were also done to investigate the 

sensitivity of the extracted C2 features of the object 

recognition model. Gaussian noise with variances of 0.01 

and 0.1 corresponding to SNR=5 and SNR=0.5 were added 

to the input images. (SNR is calculated as the ratio of the 

signal power to noise power:
NSig PPSNR = .) The results 

showed that, addition of noise with variances of 0.01 and 0.1 

results in a considerable decrease of 10% and 14% in the 

classification performance. The performance of the SVM 

classifier on the features extracted directly from the input 

images using PCA was quite robust; no change for SNR=5, 
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Fig. 3.  Two temporal filters duplicating the temporal responses of 

direction selective cells in areas V1 and MT. 

 
Fig. 4. Spatiotemporal filters produced by multiplication of the 

sample spatial and temporal filters. 

 

Fig. 5. A pair of leftward and rightward direction-selective 

spatiotemporal filters. 



  

and a 1.15% decrease for SNR=0.5 was observed.         

The output of the motion energy model in area V1 and the 

component cells of area MT are illustrated in Fig. 6. The 

output of the opponent energy mode in Fig. 6 (b) shows the 

motion in both right-ward and left-ward directions, while the 

oriented energy responses in Fig. 6 (c)–(d) can only detect 

motion in either right-ward or left-ward direction. 

IV. CONCLUSION 

In this work, we have combined a model of object 

recognition in the ventral visual pathway with a simple 

model of component motion detection in the dorsal pathway 

and presented a block diagram of the processes executed in 

the cells of each biological area.  

This work is to be extended by adding a pattern motion 

sensitive model of area MT to the block diagram presented. 

Also, the inputs to the dorsal and ventral pathways of the 

model, which were different in this work, are to be united in 

the form of a moving complex pattern. In addition, the 

computations and the hierarchical structure used in this work 

can build a framework for modeling other (visual) cortical 

areas and provide the model with other abilities such as color 

perception, which mainly occurs along the ventral pathway. 

Feedbacks from higher areas to the lower areas in each 

visual stream, and the interconnecting signals between areas 

of these two are also of considerable importance in 

constructing a more inclusive model of the visual cortex.  

To integrate quantitative models of different areas of the 

visual cortex, the parameters of different parts should be 

adjusted in a way that they preserve consistency with each 

other. To this end, the parameters in each part of the model 

can be tuned based on the psychophysical and physiological 

properties of the neurons in that visual area.  

APPENDIX 

The details of the object recognition model and some 

additional notes about extending the V1 units for the motion 

sensitive model are described below. 

S1 Layer 

Spatial receptive fields of simple cells in the primary 

visual cortex are represented with a bank of Gabor filters as 

[3], [6]:  
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where
jθ  is the preferred orientation of the cells, and is  is 

size of the filters ranging from 77×  to 3737×  which is 

equivalent to a visual angle of oo 06.119.0 −  [13]. Aspect 

ratio γ  is equal to 0.3, and the relation between the effective 

width σ  and the wavelength λ  with the filter size is 

empirically optimized as [6]: 
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where ϕ  is the phase offset which is set to zero for the 

spatial orientation-selective receptive fields. For direction-

selective V1 cells, ϕ  takes two values of 0 and 90 degrees to 

produce a quadrature pair for the motion energy model.  

C1 Layer 

C1 units correspond to V1 complex cells and combine the 

outputs of the S1 units with a MAX operation. For each 

orientation, the maximum operator acts on the output of 

every spatial frequency scale of the S1 units with a grid cell 

of size 8×8 to 22×22 with the steps of 2. This operation 

results in producing invariance to the position of the object 

(or object parts such as edges) in the image. C1 units also 

(a)

(c)
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Fig. 6. (a) A stimuli for the motion detection model, consisting of a 

moving edge presented in the x-t spatiotemporal space. (b) The 

motion opponent energy output. The light parts demonstrate motion 

in rightward and the dark parts demonstrate the leftward motion. 

When the edge is stationary, the response equals zero. (c) The output 

of rightward motion energy unit. This unit does not cover the leftward 

motion. (d) The output of the leftward motion energy unit. 



  

take maximum over every two adjacent frequency scales in 

order to make the resulting features scale- invariant. 

S2 Layer 

This layer is a set of RBF neurons that compute the 

difference of the calculated C1 features from a new input, 

with the fixed prototypes set as the centers of the neurons. 

These prototypes are once set in the learning stage by 

sampling from a set of 100 positive images. Sampling is 

done using patches in four sizes of 4×4 to 16×16 with steps 

of 4, which are placed on random positions in the C1 images 

extracted from each input image.   

C2 Layer 

This layer takes maximum over the outputs of the S2 units. 

As a result a shift- and scale-invariant, and object-selective 

feature vector with dimension equal to the number of S2 

neurons is produced for each input image.  

Classifier 

The extracted C2 features from train and test image sets 

are passed to a classifier to be trained. Like the function of 

area PFC, the classifier can then decide for the category of 

new input images. We have observed that a linear SVM 

produced better responses in comparison to kNN (with 

different numbers of k) and nonlinear SVM. More 

biologically plausible architectures can be replaced with the 

SVM classifier [10], which is used here. 
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