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Abstract— In previous papers, we provided a modeling of the
behavior “insulin delivery/glycaemia” of the diabetic patient un-
der continuous insulin infusion, continuous glucose monitoring
and we provided a method of regulation of his glycaemia.
This behavioral model is bilinear, predicting the behavior on
an interval of 15 minutes, with an average error of 15%. And
consequently, the model is adjusted for every 15 minutes.
The aim of this paper is to study the Bounded-Input-Bounded-
Output (BIBO) stability of the bilinear model in order to point
out that the patient is entering in a period of stable/unstable
equilibrium. In case of stable equilibrium, the prediction will
be valid for a longer time interval, when in case of unstable
equilibrium, it will leads one to reduce the time intervals and
to pilot closely the variations of insulin delivery.
The BIBO stability is studied by computing the generating
seriesG of the model. This series, generalization of the transfer
fuction, presents an usefull tool for analyzing the stability of
bilinear systems. It is a rational power series in noncommutative
variables and by evaluating it, a formal expression of the output
in form of iterated integrals is provided. Three cases arise:
firstly, the output can be explicitly computed; secondly, the
output can be bounded/unbounded if the input is bounded;
thirdly, no conclusion seems available about the BIBO stability
by using G. In this case, we propose a stabilizing constant input
η by studying the univariate seriesGη.

I. INTRODUCTION

There exist many medical possibilities to administer in-
sulin: sub-cutaneous, intravenous and intraperitoneal. The
sub-cutaneous route is most secure and easy to imple-
ment, but it lacks reliability. The intravenous route is the
most rapidly responding method, but it may cause vascular
complications. The intraperitoneal route seems to the most
physiological one. Moreover, it has almost to delay in the
insulin action. Even though there is no consensus on the best
way to deliver insulin, there seems to be a certain tendency
to prefer the intraperitoneal route.
In order to carry out a glycaemic regulation by an intraperi-
tonal infusion of insulin, it is necessary to be able to predict
the glycaemia as a function of the insulin infusion rate, for
a given patient and a given insulin type. There exist many
open-loop, partially closed-loop and closed-loop techniques.
The very first closed-loop regulation method was developed
by A. Albisser et al. back in 1974 [1]. Among other methods,
we can mention [17].
Unfortunately, in spite of many positive aspects of these
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methods, none of them was unanimously accepted by the
medical community. This is partly due to the lack of the
precision of the available data and, especially, to insufficient
frequency of glycaemic sampling and the difficulty to vary
rapidly the insulin infusion rates.
Recent technical progress made it possible to overcome
these difficulties. In 2000 appeared the first holter glycaemic
device: the CGMS (Continuous Glucose Monitoring System)
of Medtronic Minimed, which allows one to measure the
glycaemia every 3 minutes. Many other similar devices
followed suit. This engineering breakthrough gave a new
momentum to the research in the field of diabetes regulation.
A first regulation system based on the CGMS was developed
in 2001 by E. Renard of CHU of Montpellier in collaboration
with Medtronic Minimed [15]. But in spite of the encourag-
ing results of this work, the model used during the regulation
does not seem to be precise enough to be clinically used on
a wider scale.
Then we proposed a bilinear modeling giving a good ap-
proximation of the behavior “insulin delivery/glycaemia”on
an interval of 15 minutes, in standard conditions [12].
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Fig. 1. Model

Once the model (Fig.1) is known, the regulation consists in
inverting the input/output behavior of the system [7], [8].In
other words, one has to calculate the input (command) in
terms of the output function one wishes to obtain (Fig.2).
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Fig. 2. Regulation



This regulation is said to be partially closed-loop becausethe
glycaemic values are only used every 15 minutes in order
to compute the insulin delivery. More precisely, on constant
intervals of time[ti, ti+1]i, we compute some modelMi and
some function insulin deliveryui(t) allowing us to follow
an ideal trajectoryyi(t) for the glycaemia. On every time
interval, the trajectory is recalculed because of the variation
between the ideal trajectoryyi(t) and the true trajectory
(Fig.3).
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Fig. 3. Trajectory

The crucial point consists in determining the size of the time
intervals, that means the frequency of the changes of the
insulin delivery. The study of the stability leads us to reduce
the size of the interval when the system is unstable.

II. M ODELING “ INSULIN /GLYCAEMIA” AND REGULATION

OF THE GLYCAEMIA

There are two general categories of techniques used to
achieve this goal: phenomenological modeling and behav-
ioral modeling.
Phenomenological modeling requires a prior knowledge of
the equations governing the evolution of the considered pro-
cess. Numerous phenomenological models of the glycaemic
behavior of diabetics were still developed, for example see
[2].
In the behavioral modeling, one does not need any prior
knowledge of the phenomenon. The system is regarded as
a black box [19]. The goal is to construct a model that
approximates the unknown system with a desired precision
[5]. The parameters involved in the obtained system of
equations have no practical significance, but their number
usually depends on the required precision.
A commonly-used class of models is formed by linear
dynamical systems. Such models were extensively consid-
ered by the control theory specialists. Linear-model-based
regulation is rather simple to implement and it gives quite
satisfactory results in many different cases. However, it did
not seem to be sufficient for regulating the glycaemia of
diabetics.
Another class of models consists of bilinear dynamical

systems. A bilinear system is quite similar to a linear one: it
is simply additionally linear as a function of the input. One
has thus more leeway to approximate the real system with
a better precision. In our method, we choose to model the
dynamical systems by bilinear systems whose dimension is
not fixed in advance.
Since a diabetic does not respond in the same way to equal
doses of insulin at different times of the day, it is reasonable
to suppose that she is described by different dynamical
systems at different time instants. The goal of our modeling
method is to construct a collection of models that describe
the behavior of the glycaemia under certain conditions. These
conditions can be either defined in advance (for example,
during the inter-prandial period, during meals or during
physical effort), or determined by a learning process. Each
model is thus valid only for a certain period of time. In
practice, we can show that our model is valid for at least
fifteen minutes. Moreover, this duration is likely to increase
with the increase of the precision of the glucose sensors.
Mathematically speaking, the problem is to identify locally
(near a time instantt0) up to a given order k, a dynamical
system(Σ) considered as a black box, when only a sample
of the input/output data is known. The considered dynamical
systems involve one input and the drift. The input is the
insulin infusion rate and the drift corresponds to the fact
that the system undergoes some changes even in the absence
of any input.
Our method involves the identification up to order k of
the generating series G of the unknown system and the
construction of a bilinear system(Bk) approximating the
unknown system up to order k. The generating series of
a nonlinear system can be seen as a generalization of the
transfer function. It is used to represent the input/output
behavior of the system.
The main advantage of this method is the possibility to
provide, in terms of the chosen order k, a system(Bk)
approximating the unknown system.(Bk) is chosen so that
its output and the output of the unknown system coincide up
to order k.
The problem of identification of dynamical systems in a
neighborhood oft0 is stated in the following way: to explic-
itly determine the generating series of the unknown system,
up to a given order k, given the Taylor series of the input
and corresponding output functions.

The main tool used during the identification is the gen-
erating series of the system. A generating series can be
considered as an infinite (noncommutative) polynomial that
codes the relationship between the inputs and the output.

The identification involves the following three steps. Dur-
ing the first step, one obtains a system of linear equations that
express the relationship between the derivatives of the input
and the output. The unknown parameters are certain linear
combinations of the coefficients of the generating series. On
the next step, these linear combinations of the coefficientsare
identified from the available data, by choosing appropriate
input/output sets. Finally, the coefficients themselves are
identified by solving another system of linear equations.



This algorithm is programmed in MAPLE and presented
in [13]. A polynomial generating seriesGk is thus identified,
and it is equal to the generating series G of the system(Σ)
truncated at degree k.

Once a truncated generating seriesGk is identified, it re-
mains to construct a model therefrom. We construct a bilinear
system, approximating the dynamical system(Σ), by pro-
longing Gk to a rational seriesRk whose generating series
is of minimal rank among all the series coinciding withGk

up to order k (see [10]). Rational series are generalizations
of rational functions and the dynamical systems representing
them are bilinear. A bilinear system corresponding to this
rational series of minimal rankRk is finally constructed.
This system provides a local model of the black box.

A. The bilinear model

A bilinear system(B) with a single inputu1(t) and a drift
u0(t) ≡ 1 is given by its state equations

(B)

{

x(1)(t) = (M0 + u1(t)M1)x(t)
y(t) = λ.x(t)

(1)

wherex(t) ∈ Q, R−vector space,M0,M1, λ areR−linear.
We consider the alphabetZ = {z0, z1}, wherez0 codes the
drift andz1 codes the input. The expansion of the generating
seriesG built on the alphabetZ, by notingw a word∈ Z∗,
is the following:

G =
∑

w∈Z∗

〈G|w〉w

G is a rational series defined from (1) by:

G = λ.x(0) +
∑

ν≥0

1
∑

j0,···,jν=0

λ.Mj0 · · ·Mjν
x(0)zj0 · · · zjν

(2)
Firstly, we compute the rational expression associated with
(2), which is a digest of the expansion ofG, by generalizing
the Schutzenberger’s method [16] for computing the rational
expression describing a rational series. This rational series
can be represented by a finite weighed automaton [11].
By “evaluating” the expression ofG, we can obtain a formal
expression of the output [6]

y(t) =
∑

w∈Z∗

〈G|w〉

∫ t

0

δ(w) =

∫ t

0

δ(G) = ε(G) (3)

where the iterated integrals are recursively defined by:

∫ t

0

δ(w) =

{

1 if w = 1Z
∫ t

0
(
∫ τ

0
δv)ui(τ)dτ if w = vzi

(4)

Secondly, we compute directly the iterated integral
∫ t

0
δ(G)

where G is the rational expression that we computed
previously.

B. The regulation method

Once the model is known, the regulation consists in
inverting the input/output behavior of the system. In other
words, one has to calculate the input (command) in terms
of the output function one wishes to obtain. The regulation
used in this case is called partially closed-loop, since the
glycaemic values are used to recalculate the insulin infusion
rates every fifteen minutes. These rates change continuously
in a purely closed-loop scenario.
In a previous paper [9] we have shown that we are capable of
finding the Taylor series expansion of the command from the
Taylor series expansion of the desired output trajectory, using
generating series techniques similar to those used during
the identification and the modeling. The algorithm consists
in sequential solving a system of polynomial equations. If
the model of a diabetic were an exact one, this would be
largely sufficient to regulate the glycaemia. But since our
bilinear model is only an approximation of the actual one,
the glycaemic behavior will eventually deviate from the
chosen trajectory. As a consequence, from time to time the
trajectory has to be recalculated in order to compensate for
these deviations and the insulin infusion device has to be
reprogrammed accordingly.
An important point is to determine the frequency of change
of the insulin infusion rates. The first tests of our modeling
method [12] showed that we can predict the glycaemia over
15-minute intervals with an error of about 10% or 15%.
Therefore, we need to provide a new data to the pump
approximately every fifteen minutes. As we have already
remarked above, this duration is likely to increase with the
increase of the precision of the glucose sensors.

III. T HE BIBO STABILITY

A dynamical system is Bounded-Input-Bounded-Output
(BIBO) stable if its outputy(t) is defined and bounded for
every bounded inputu(t).
The output of a bilinear dynamical system can be computed
in evaluating its generating series. More precisely, the eval-
uation of the series consists in integrating every term of this
series and in summing.

We use the theorem of Hoang Minh [14] :
Theorem 1:
∀k, let us suppose thatGk is exchangeable and let us denote
ε(Gk) by gk(ξ(t))

gk(ξ(t)) = gk(t, ξ1(t), · · · , ξm(t))

whereξj(t) is the primitive of the inputuj(t) cancelling for
t = 0. Then,∀k, the series

Sk = G0zi1G1 · · · zik
Gk

wherezi1 , · · · , zik
∈ Z, has the following evaluation:

ε(Sk) = y(t) =
∫ t

0

∫ τk

0

· · ·

∫ τ2

0

g0(ξ(τ1))g1(ξ(τ2) − ξ(τ1)) · · ·

gk(ξ(t) − ξ(τk))dξzi1
(τ1) · · · dξzik

(τk)



Three cases occur: In some cases, this process is easy
and y(t) can be explicitly computed. In other cases, if we
assume thatu(t) is bounded by 2 valuesMin,Max, then
we can know if so isy(t), without computing explicitly
y(t). Lastly, in some difficult cases, we only try to find
some stabilizant constant inputsu(t) = η such that the
output remains bounded, if it is possible. We prove that the
output of the bilinear system for the inputu(t) = η consists
in evaluating some univariate seriesGη. This series being
rational, can be written as a quotient of 2 polynomials. We
can then use 2 propositions [3], [4] dealing with the poles
of Gη in order to decide that a stability exists foru(t) = η

Proposition 1
A necessary condition for the BIBO stability of(B), is that,
for everyη ∈ R, the real part of the poles ofGη is ≤ 0 and
the imaginary poles ofGη are single.

Proposition 2
If there existsη such that every pole ofGη has a negative
real part and if every imaginary pole is single, thenu(t) = η

is a stabilizing input

1) Example 1:The state equations of the system(B2) are
the following, for an insulin deliveryu(t) and a glycaemia
y(t)







x(1)(t) = (

(

0 0
a b

)

+ u(t)

(

0 0
1 0

)

)x(t)

y(t) = (1.5 1) x(t)

The generating series is :

G2 = (z1 + az0)(bz0)
∗ + 1.5

Its automaton is presented in the Fig.4

We split this series in 2 parts
G21 = z1(bz0)

∗, G22 = az0(bz0)
∗

with G2 = G21 + G22 + 1.5.
We can compute the evaluation ofG21 et G22 and we obtain
an explicit expression of the outputy(t).
ε(G21) = ebt

∫ t

0
e−bτ1dξ1(τ1) and

ε(G22) = aebt
∫ t

0
e−bτ1dτ1

For u(t) = η thenξ1(τ1) = ητ1, we get :
y2,η(t) = η+a

b
(ebt − 1) + x(0)

This system is not BIBO forb > 0 and is BIBO forb < 0
(if M1 ≤ u(t) ≤ M2 theny(t) is bounded)
For instance, fora > 0, b < 0, 0 ≤ u(t) ≤ M , then
y(t) ≤ x(0) + M+a

−b

2) Example 2:The state equations of the bilinear system
(B3) are














x(1)(t) = (





0 0 0
a b c

0 a 0



 + u(t)





0 0 0
1 0 0
0 1 0



)x(t)

y(t) = (1.5 1 0) x(t)

The generating series is

G3 = (z1 + az0)(bz0 + (z1 + az0)cz0)
∗ + 1.5

Its automaton is presented in the Fig.4.
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We computeG3,η by substitutingηz0 to z1 in G3: G3,η =

1.5 + (a+η)z0

1−bz0−(a+η)cz2

0

.
If η = −a then y3,η(t) = x(0) else we decomposeG3,η in
partial fractions for studying the constant stabilizing inputs
u(t) = η depending on the parametersa, b, c.

IV. CONCLUSIONS AND FUTURE WORKS

The BIBO stability of a bilinear system cannot be gen-
erally studied by considering its state equation. In this
paper, we use the “evaluation” of its generating seriesG.
If the rational expression ofG is simple or obtained by
concatenating some simple rational expressions, then the use
of the generating series of the system provides an answer
about the stability and a bound for the output. Otherwise,
we can look for a stabilizant constant inputu(t) = η by
using the univariate seriesGη.
By applying this method to the bilinear model approximating
the behavior “insulin delivery/glycaemia”, we expect an
information about the stability of the (unknown) system
describing really this behavior.
A specific surveillance depending on whether the system is
stable/unstable will be set. Rather than take constant interval
of 15 minutes for recalculate the ideal trajectory of the
glycaemia, we propose that the time intervals depend on
this information about the stability. In case of unstability,
the varying size of the intervals of time would be defined in
order to keep the glycaemia between some moderate bounds.
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