BGBlast: A BLAST Grid Implementation
with Database Self-Updating and Adaptive
Replication

Gabriele A. TROMBETTI*®, Ivan MERELLI *, Alessandro ORRO **! and Luciano
MILANESI *

* Institute for Biomedical Technologies — National Research Council,
via Fratelli Cervi 93, 20090 Segrate (M), Italy

® Consorzio Interuniversitario Lombardo per L'Elaborazione Automatica,
via R. Sanzio 4, 20090 Segrate (MI), Italy

Abstract. BLAST is probably the most used application in bioinformatics teams.
BLAST complexity tends to be a concern when the query sequence sets and
reference databases are large. Here we present BGBlast: an approach for handling
the computational complexity of large BLAST executions by porting BLAST to
the Grid platform, leveraging the power of the thousands of CPUs which compose
the EGEE infrastructure. BGBlast provides innovative features for efficiently
managing BLAST databases in the distributed Grid environment. The system (1)
keeps the databases constantly up to date while still allowing the user to regress to
earlier versions, (2) stores the older versions of databases on the Grid with a time
and space efficient delta encoding and (3) manages the number of replicas for each
database over the Grid with an adaptive algorithm, dynamically balancing between
execution parallelism and storage costs.

Keywords. Bioinformatics, adaptive database replication.

Introduction

BLAST [1], [2] is a well known and widely used bioinformatics application for
comparing (usually unknown) “query” biological sequences, either genomic or amino-
acidic, against a set of known “reference” sequences (“Blast Reference Database” or
BRD in this paper). BLAST is a variation and approximation of the exhaustive
dynamic-programming Smith-Waterman [3] algorithm for local sequence-alignment,
resulting in a speed increase of 10-100x, at the expense of some sensitivity [4].

While BLAST sensitivity is generally regarded as still adequate for most
circumstances, the speed of BLAST can still be scarce for certain massive
computations, which are in fact performed rather commonly by many bioinformatics
research groups.

The problem of BLAST speed can be addressed in various ways, the solutions
usually belonging to the following groups (a) faster alternatives to BLAST, (b) BLAST
execution on clusters and (c) BLAST execution in Grid. Pros and cons for (a) and (b)

" Corresponding Author: Alessandro Orro, Institute for Biomedical Technologies — National Research
Council, via Fratelli Cervi 93, 20090 Segrate (MI), Italy; E-mail: alessandro.orro@itb.cnr.it

will be mentioned in the next chapter. The solution we present in this paper belongs to
(c). As far as (c) is concerned, the main problems usually arising from BLAST
execution in Grid are:

1. Defining and enforcing a policy for replication of the BRDs over the Grid.
BRDs are large files needed during BLAST execution over the Grid. Due to
their size they require allocation on Grid Storage Elements (SEs). Rising the
number of replicas for a BRD reduces the Grid queue times for BGBlast runs
using that BRD, but also rises the associated storage costs (see chapter 2.2.1
below). Due to the significant size, it is not reasonable to replicate every BRD
on a large number of SEs; compromises have to be made.

2. Keeping the replicated BRDs up-to-date.

3. Optionally it might be profitable to store older versions of the BRDs so that
BLAST users can reproduce and verify results obtained in the past. The
problem in providing this feature is that keeping older versions of BRDs
available normally has a very high storage cost.

In the Methods section more details are given regarding the above issues and on
how we were able to address them.

1. Related Work

As mentioned in the Introduction, a number of solutions have been developed to
address the problem of BLAST speed for large BLAST runs. In this chapter we will
report about the main approaches.

1.1. Faster alternatives

Various alternatives to BLAST which are faster and similar in scope are available such
as MegaBLAST [5], [6], BLAT [7] and PatternHunter [8]. These alternatives usually
are different enough to be not suitable for exactly the same situations as BLAST is, or
sometimes can have different drawbacks. As far as the examples are concerned,
MegaBLAST and BLAT, albeit much faster, have a lower sensitivity than BLAST.
PatternHunter on the other hand claims a similar sensitivity but is a commercial closed
source product, and the algorithm is not known exactly. Such drawbacks might or
might not be acceptable for the research, depending on the specific circumstances. In
addition, researchers aiming at publishing their results might want to use specifically
BLAST simply because its reliability is well established and cannot be object of
discussion.

1.2. Cluster execution

Various solutions [9], [10], [11] have been developed to parallelize the BLAST
algorithm for execution on computing clusters and supercomputers. These solutions
have been used for quite some time now and are regarded as reliable. The main
drawback of cluster execution for BLAST is the initial cost for purchasing the
dedicated cluster, which is high, and might be unreasonably high -relatively speaking-
in case the cluster is not going to be used full-time (uneven workloads).

1.3. Grid execution

A number of implementations of BLAST for the Grid environments already exist [12],
[13], [14] but in general suffer from the problems already mentioned in the
introduction. In this paper we present BGBlast, another Grid implementation for
BLAST which we developed evolving the earlier GridBlast project carried out by
Merelli and Milanesi [14]. In BGBlast we successfully addressed the issues mentioned
in the introduction.

2. Methods

BGBlast (BioinfoGridBlast) has some unique advantages over the existing solutions.
BGBlast is an innovative porting of BLAST onto the Grid providing the following
capabilities (1) automatic update of the biological databases handled by BGBlast (2)
adaptive replication of databases on the Storage Element Grid nodes (3) version
regression for the biological databases. BGBlast is the evolution of the earlier project
GridBlast [14] on top of which the features (1), (2) and (3) have been added:

1. Automatic Database Updater (ADU): ensures the users always work with the
latest version of every Blast Reference Database (BRD), and this without
needing human staff to manually monitor the release of newer versions of
BRDs or manually performing database updates over the Grid.

2. Adaptive Replication (AR) for the BLAST Reference Databases: ensures that
the most used BLAST databases are replicated more times than less used
databases. The optimal number of replicas for each BRD is calculated
dynamically based on the relative usage of the specific database in recent
times. This keeps a constant optimization of Grid queue times vs Grid storage
costs.

3. Version Regression for BLAST Reference Databases: allows the user of
BGBlast to specify an older version of a certain BRD to be used for the
computation. This allows the user to reproduce exactly computations obtained
in the past, something that might be needed to confirm results that were
obtained. The storage of older version of BRDs is performed with a delta-
encoding efficient in both space (storage costs) and time (a short download
time and a short time to patch a BRD for regressing it to an earlier version).

2.1. GridBlast core

BGBlast is composed of the following three functional parts: GridBlast core, Database
Version Regression (DVR) and Automatic Database Updater (ADU). Here follows a
more detailed description. GridBlast [14] is still the core for BGBlast, providing the
following capabilities:

1. Factor J parallelization of large BLAST executions. This is done by splitting
the user input into J even subset, each taking 1/J of the original time to execute.
This is followed by the submission of J smaller BLAST jobs (1/J of query
sequences against the target BRD) on the EGEE [17] Grid platform. J is chosen
so that jobs of reasonable length are created: neither too small (Grid overhead
would be comparatively large) nor too big (insufficient parallelization).

4. A rate limiting feature triggered on very large BLAST executions. This limits
the rate at which the jobs are submitted to the Grid so to avoid a sudden
massive Grid exploit.

5. Monitoring of every launched launched job and automatic resubmission in case
of failure. This is still important nowadays, as the Grid platform is still new
and reliability is not excellent.

6. Fetching of the results back after the completion of the Grid jobs. Merging of
such results into a single BLAST results file.

7. A recent improvement of the core provides measurements of the queue times
and CPU hours consumed by the J Grid jobs for each run of BGBlast. These
measurements are passed to the Adaptive Replication Manager and are
essential for the correct functioning of the AR functionality (see).

On top of the GridBlast core, the following functionalities have been implemented:

2.2. Adaptive Replication Manager (ARM)

The Adaptive Replication of BLAST Reference Databases is a BGBlast feature for
optimizing the number of replicas for each BLAST database dynamically and
adaptively.

2.2.1. Motivation for ARM

BLAST Reference Databases (BRDs) are large files, usually in the range S00MB-5GB,
and are needed during the run of BLAST on the Grid CEs for each of the J BGBlast-
generated jobs. Due to their size, it is not reasonable to download a BRD from a remote
location. It is hence necessary to constrain the J jobs to execute on CEs having a replica
of the user-requested BRD on a near (local network) SE.

Due to this constraint, the number of CEs to choose from for the BGBlast
generated Grid jobs is limited. This impacts the queue times negatively and this is
particularly true if the replicas of the requested BRD are few. A massive replication of
every BRD on all the SEs of the Grid is not feasible either, because of their size which
would make the storage costs unbearable.

Clearly, it is more useful to have additional replicas for BRDs used often, so that
the queue times are reasonably small for the most common BGBlast runs, while it is
better to have fewer or possibly only one replica for the BRDs used less frequently, in
order to reduce the Grid storage costs.

Since the amount of usage of for each of the BRDs cannot be known in advance,
we have implemented a dynamic, adaptive replication mechanism to balance between
queue times and storage costs.

2.2.2. Methods for ARM

The ARM performs a D days moving average (usually D=10) of the CPU hours and
queue times used for each reference database. This statistical measurement is used to
compute the optimal number of replicas for each of the BLAST reference databases.
This algorithm balances between the additional storage costs incurred in increasing the
number of replicas and the benefit of the reduced queue times.

Additionally, when evaluating the addition of a replica the ARM engine also
evaluates which of the SEs would be the most advantageous for a replica addition.
Similarly, when evaluating the benefit of removing a replica, the ARM engine also
evaluates the least advantageous of the currently existing replicas, that is, best for
removal. See below for further details on the algorithm.

The measurements of used CPU-hours and queue times experienced for each
BGBlast run, and implicitly for each BLAST database, are provided to the ARM by the
GridBlast core (see). The dynamic variation of the number of replicas is evaluated, and
possibly performed, at each BGBlast run and at the end of each day.

2.2.3. Algorithm details

BGBlast's ARM optimizes the number of replicas for each BRD separately, by
minimizing the sum of the storage cost and user wait time cost. The algorithm is an
iterative algorithm which converges on the optimal number of replicas and the optimal
location for them, simultaneously.

The ARM optimization algorithm at each cycle evaluates the benefit of the
addition of one replica and the benefit of the removal of one replica.

During the evaluation of the addition of one replica, the ARM takes into account
the specificity of each Grid location suitable for replication (i.e. every SE not yet
holding a replica), hence finding the best location for an added replica. The ARM then
evaluates whether the addition of a replica in that specific place is profitable or not,
using the costs formula.

The best location for adding a replica is ideally a SE having a large amount of free
disk space (so as to cause proportionally little impact when adding the replica) near a
CE being large in the number of nodes (a larger computing power means that the job
queue is generally consumed more quickly).

The costs formula for evaluating variations in replicas numbers considers the Grid
queue times to be inversely proportional to the number of nodes useable by BGBlast,
i.e. those having a replica nearby (see chapter 2.2.1). The correctness of this
assumption can in fact be demonstrated under some simplifying assumptions. The cost
of a minute of user wait time is to be specified in the BGBlast configuration file.

The cost of Grid storage is the other cost to be specified in the BGBlast
configuration file. The cost of storage is to be expressed in terms of cost per percent of
free storage space occupied per day on a SE. This approach was chosen for reflecting
the intuitively higher impact on other Grid users that a GB-sized file has when
uploaded on a small or already full SE compared to the impact it has when uploaded
on a SE with plenty of free space.

The ARM engine hence works by minimizing the sum of the storage cost and user
wait time cost, for each BRD separately.

The process for evaluating the benefit of the removal of one replica is analogous.
The worst existing replica is chosen using the same kind of analysis as described
above. The cost formula is then recomputed while simulating the removal of the
“worst” replica, and the result obtained in this way is compared to the cost associated
to the current situation. If the cost after the removal of the replica appears lower, the
replica is removed.

This algorithm converges quickly.

2.3. Automatic Database Updater (ADU)

BGBlast's ADU engine constantly monitors FTP sites for newer versions of the BRDs
registered to be handled by BGBlast. If a newer version of a BRD is detected, the ADU
automatically updates all the replicas of such BRD over the Grid. This is not the only
action performed by the ADU: the ADU also computes an xdelta patch for regressing
the newer version of the BRD to the earlier version of the BRD now being replaced,
and uploads the said xdelta patch on a predefined SE. The xdelta patch computed by
the ADU, together with the xdelta patches computed during previous database updates,
is needed for the DVR functionality (see).

Such xdelta patches are many times smaller than any version of the BRD they
refer to, and this makes the storage costs reasonable. In order to further reduce the
storage costs, we decided to keep only one replica for the xdelta patches. Also see
chapter 2.4 on this topic.

oo &0

yersion

BLAST
Sub-task

I

Polling

GridBlast ARM
DB Usage
(CPU hours)
BLAST
task

Y

BLAST User %

=

_| Userlnterface

Figure 1. Interactions between parts of BGBlast and Grid elements. The user interacts with the GridBlast
core for launching a BLAST task on the Grid. The BLAST task is split by GridBlast in jobs of equal size
(“sub-tasks”) and sent to Computing Elements (CEs) for execution. The code for performing the DVR is sent
to the CEs together with the Grid jobs. The xdelta patches are stored on a single SE (not replicated) as
shown, however, the interaction between the DVR code and the xdelta patches is not shown in the figure.
The ADU uses a timer-based polling to detect and fetch new versions of a database from the FTP site of
origin, then it updates the databases located on the Storage Elements (SEs). The ARM receives notification of
CPU time spent on a database by the GridBlast core, then it adjusts the number of replicas of the database on
the SEs.

2.4. Database Version Regression (DVR)

BGBlast provides an option for specifying a version (in terms of date) of the BRD to
be used for the BLAST computation, along with the name of the BRD. The requested
version of the BRD is obtained from the latest version of the BRD by applying the
ADU-generated xdelta patches in sequence, from the newest to the oldest. Each xdelta
patch regresses the BRD by one version, and this action is performed until the
requested version is reached.

The version regression operation is performed on the Computing Element (CE)
after the download of the BRD from the near (local network) SE and prior of starting
the computation.

The download of the xdelta patches is generally remote, as the patches are only
replicated once on the Grid (see chapter 2.3), and this is in contrast with the download
of the BRD (latest version) which is over a local network (see chapter 2.2.1). However,
due to the small size of the patches, the patches' download time rarely surpasses that of
the BRD (latest version). Since the DVR is also a relatively uncommon request by
users, we considered the patches download time an acceptable overhead.

3. Conclusion

We have shown how we were able to improve BLAST performances by distributing
the BLAST execution on the EGEE Grid infrastructure, leveraging the power of
thousands of CPUs. Additionally we have shown how we could further reduce the
queue times while impacting the Grid storage costs as little as possible, by using
adaptive replication for BLAST databases, and how we were able to provide version
regression for such BLAST databases. Our work can shorten biologists' waiting times
for their research, and also acts as a proof of concept showing what can be done to
optimize Grid resources and Grid applications.

BGBlast will be available as a service for EGEE in the upcoming BioinfoGRID
portal by CNR-ITB. CNR-ITB will be in charge of the maintenance for the Blast
biological databases on the Grid.

Acknowledgment

This work was supported by the Italian FIRB-MIUR project “Italian Laboratory for
Bioinformatics Technologies — LITBIO” [15] and by the European Specific Support
Action BioinfoGRID [16] and EGEE [17] projects.

References

(1]

[2]
(3]

[4]
[5]

[6]
(7]
(8]

[9]
[10]
[11]

[12]
[13]
[14]
[15]

[16]
[17]

S.F. Altschul, W. Gish, W. Miller, E:W. Myers and D.J. Lipman: Basic Local Alignment Search Tool,
J. Mol. Biol. 1990;215(3):403-10

BLAST - http://www.ncbi.nlm.nih.gov/BLAST/

T.F. Smith and M.S. Waterman: Identification of Common Molecular Subsequences, Journal of
Molecular Biology 1981;147:195-7

http://searchlauncher.bcm.tmc.edu/help/AlignmentScore.html

Z. Zhang, S. Schwartz, L. Wagner, and W. Miller (2000): A greedy algorithm for aligning DNA
sequences, J. Comput. Biol. 2000;7:203-14

http://www.ncbi.nlm.nih.gov/blast/megablast.html

W.J. Kent: BLAT - the BLAST-like alignment tool, Genome Res 2002;12:656-64

B. Ma, J. Tromp, and M. Li: PatternHunter: faster and more sensitive homology search,
Bioinformatics 2002;18(3):440-5

Y. Qi, F. Lin: Parallelisation of the blast algorithm, Cell Mol Biol Lett. 2005;10(2):281-5

D.R. Mathog: Parallel BLAST on split databases, Bioinformatics 2003;19(14):1865-6

A. Darling, L. Carey, and W. Feng: The Design, Implementation, and Evaluation of mpiBLAST,
4th International Conference on Linux Clusters June 2003; San Jose, CA

M. Bayer, A. Campbell, D. Virdee: A GT3 based BLAST grid service for biomedical research,
Proceedings of the UK e-Science All Hands Meeting 2004

F. Konishi, and Y. Shiroto, and R. Umetsu, and A. Konagaya: Scalable BLAST Service in OBIGrid
Environment, Genome Informatics 2003;14:535-6

I. Merelli, L. Milanesi: High performance implementation of BLAST using GRID technology,
Proceedings BITS 2005: p.59

LITBIO — Laboratory for Interdisciplinary Technologies in Bioinformatics — http://www.litbio.org
BioinfoGRID - Bioinformatics Grid Applications for Life Science — http://www.itb.cnr.it/bioinfogrid
EGEE - Enabling Grids for E-SciencE — http://public.eu-egee.org/

	1.Related Work
	1.1. Faster alternatives
	1.2. Cluster execution
	1.3. Grid execution

	2.Methods
	2.1. GridBlast core
	2.2. Adaptive Replication Manager (ARM)
	2.2.1. Motivation for ARM
	2.2.2. Methods for ARM
	2.2.3. Algorithm details

	2.3. Automatic Database Updater (ADU)
	2.4. Database Version Regression (DVR)

	3.Conclusion

