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Abstract. Cell cycle is one of the biological processes that has been investigated 
the most in the recent years, this due to its importance in cancer studies and drug 
discovery. The complexity of this biological process is revealed every time a 
mathematical simulation of the processes is carried out. We propose an automated 
approach that mathematically simulates the cell cycle process with the aim to 
describe the best estimation of the model. We have implemented a system that 
starting from a cell cycle model is capable of retrieving from a specific database, 
called Cell Cycle Database, the necessary mathematical information to perform 
simulation using a grid approach and identify the best model related to a specific 
dataset of experimental results from the real biological system. Our system allows 
the visualization of mathematical expressions, such as the kinetic rate law of a 
reaction, and the direct simulation of the models with the aim to give the user the 
possibility to interact with the simulation system. The parameter estimation 
process usually implies time-consuming computations due to algorithms of linear 
regression and stochastic methods. In particular, in the case of a stochastic 
approach based on evolutionary algorithms, the iterative selection process implies 
many different computations. Therefore, a large number of ODE system 
simulations are required: the grid infrastructure allows to distribute and obtain the 
best model that fits the experimental data. The computation of many ODE systems 
can be distributed on different grid nodes so that the execution time for the 
estimation of the best model is reduced. This system will be useful for the 
comparison of models with different initial conditions related to normal and de-
regulated cell cycles. 
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Introduction 

The cell cycle is a crucial event in the life of every organism. It consists of a series of 
coordinated and oscillating steps which allow the cell to grow and duplicate correctly. 
It is an important biological process frequently studied in correlation to tumour disease 
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and it is considered a valuable target for drug discovery. Thus, the typical systems 
biology approach can be applied to study this process in order to verify the impact that 
differently regulated genes can have in normal and cancer cells. The identification of 
cell cycle models has been frequently reported in the recent literature: in particular cell 
cycle models for the budding yeast S. cerevisiae are more advanced [1] but also 
detailed models for mammalian cell cycle are forthcoming [2-4]. 

The ultimate objective of these studies consists in the mathematical simulation of 
different biological processes which have been described by a set of kinetic equations 
that define the biochemical reactions, and dynamic equations, structured as Ordinary 
Differential Equations (ODE) system, that quantify the biological processes. The 
kinetic equations require initial parameters, such as the rate constants for each reaction, 
and also the initial concentration of the model species. The mathematical simulation of 
the system can be performed via many different mathematical software, both license-
free such as XPPAUT and Copasi or requiring license, like Mathematica and MatLab. 
For the simulation of a biological process it is necessary to define the equations 
describing the system and to set the initial parameters required for the calculation.  

The simulation of a single set of equation can be performed on a single 
workstation because the numerical integration of an ODE system is not very time 
consuming. On the other hand, High Performance Computing techniques, like grid, are 
extremely useful to perform the parameter estimation that is the evaluation of the best 
set of parameters which define the model relating to a specific experimental dataset. 
The parameter values have high impact on the accuracy of the models in representing 
real biological systems but these values are difficult to estimate experimentally. 
Generally the estimation of the kinetic parameters in silico is performed by fitting the 
data by computing a number of ODE systems with different parameters and verifying 
the best solution.  

This problem has been recently faced by Zwolak et al. [5] who implemented an 
algorithm through which the estimation of the best set of parameter fitting the 
experimental data is possible. The parameter estimation is performed using  
ODRPACK [6] which finds an estimate for the rate constant by minimizing the 
weighted orthogonal distance between the experimental data set and the calculated 
model. 

A different way to computationally solve the problem of the parameter estimation 
has been suggested by Dhar et al. [7]. The technology implemented relies on an 
Adaptive Swarm Algorithm [8], which is based on simulation of social behaviour in a 
flock of birds. This algorithm is highly suitable for constrained multi-objective 
optimization problems. The models are simulated over the grid  through GridX meta 
scheduler and Globus. 

1. Methods 

In the context of a systems biology study of the cell cycle process, we developed a 
system for the  automatic computation of cell cycle models. Our system relies on the 
Cell Cycle Database, a resource which integrates the most useful information about 
genes, proteins and models related to the budding yeast and mammalian cell cycle 
processes. Our computational system allows users to solve the ODE system which 
mathematically describes the biological system using grid technology. The aim of this 
work is the development of a parameter estimation pipeline on the top of this system, in 



  

order to find the best model that fits the experimental data. Furthermore, the system 
integrates mathematical data for each model, such as kinetic and dynamic equations, 
the initial parameters and the initial model components concentrations. 

1.1 The Cell Cycle Database 

The pipeline designed for the model simulation relies on the relational database named 
Cell Cycle Database [http://www.itb.cnr.it/cellcycle], an integrative resource which 
collects the main information regarding genes and proteins involved in budding yeast 
S.cerevisiae and mammalian cell cycle process. A specific section of the database, 
which is dedicated to store the main information related to the yeast and mammalian 
cell cycle models published in the recent literature, allows the user to interface with the 
pipeline for model simulation. The implemented system is able to provide information 
on the published models, such as the detailed publication data (e.g. authors, PubMed 
ID, abstract, journal information), the diagram of the model and the related XML file.  

1.2 Model Simulation Engine 

The pipeline is composed of a series of PHP scripts that allow the user to extract 
information both from model repositories and from the XML file which describes the 
whole model. Moreover, these scripts interface users with the model simulation input 
in order to choose the parameters of the computation and retrieve the model behaviour 
related to the given conditions.  

The simulation software chosen for our system is XPP [10], a computational 
device frequently used in systems biology numerical calculations. XPPAUT allows the 
solution of differential equations using many different options for the numerical 
algorithm. It is widely used for the modelling of different biological pathways [4] and it 
requires simply formatted input files. XPPAUT is very portable, has a simple input file 
format and can be run without a GUI: so it is a perfect candidate for solutions using a 
grid application.  

1.3 XML files and model equations 

Models stored in the Cell Cycle Database are encoded in Systems Biology Markup 
Language (SBML) [10], an internationally supported and widely used computer-
readable format for representing models of biochemical networks. Some SBML models 
included in the database are manually generated using the JigCell Model Builder 
software [11], a model editor which allows the construction of biochemical reaction 
networks in SBML format. 

Mathematical expressions in SBML are represented using Mathematical Markup 
Language (MathML) [12] an XML-based language especially created to represent 
mathematical expressions. Some MathML based components, such as algebraic 
constraints, assignment and rate rules, function definitions, kinetic laws and 
stochiometric matrix are crucial to describe a biological pathway mathematically.  

The models are essentially based on differential equations and they can describe 
abundances, kinetics and binding affinities of pathway components and their 
interactions [13]. In this work we consider models based on a system of nonlinear 
ordinary differential equations (ODE system) in which each Xi state variable (usually 
species concentrations) can be described by the Eq. (1): 
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where the function Fi is the rate of change or the rate law of the state variable Xi 

and pi are parameters of the function Fi. The time course of each state variable is 
obtained by solving the ODE system which requires a set of initial conditions Xi(t=0). 
One of the biggest problems of the differential equations approach is the experimental 
estimation of the numerical values of species initial concentrations and parameters. A 
way to bypass the experimental determination of these values is by parameter 
estimation, or curve fitting, even if these techniques need many quantitative and 
qualitative experimental data against which to fit the parameters. 

1.4 The grid platform 

Using the developed user interface, the computation of the simulation is submitted to a 
High Performance Computing platform, the grid. This solution plays a key role in the 
development of a system that must compute a large number of independent ODE 
system solutions in order to perform parameter estimation on an experimental dataset. 
In this work we successfully tested the possibility of porting the ODE solver system on 
the grid, by the creation of an infrastructure able to support users and to perform 
efficiently the distribution of computation. 

The developed solution relies on the wide area grid platform of the European 
EGEE project, a network of several Computing Elements, that are the gateways for the 
computer clusters on which jobs are performed while the grid core is a set of Resource 
Brokers delegated for controlling the execution of the different jobs. This grid 
infrastructure is based on the Globus Toolkit which represents an ideal communication 
layer between the different grid components. 

The computational resources are connected to a Resource Broker that routes each 
job onto a specific Computing Element and takes into account the directives of the 
submitting script, called JDL. The JDL script, composed using the Job Description 
Language, specifies the InputSandBox, that lists the files to be submitted to grid, and 
the OutputSandBox, which are the output files to be retrieved. The software that gives 
access to the distributed platform is made of a set of tools by which secure 
communications can be established between the grid infrastructure and the User 
Interface.  

2. Implementation  

The core of our technology is a PHP library (in the middle of Fig. 1), that creates a 
pipeline relying on independent engines (at the bottom in Fig. 1) in order to generate 
web pages for the interaction with users (at the top in Fig. 1). The visualization of the 
SBML model  requires different components: data retrieval from the Cell Cycle 
Database, the SBML parser and the MathML to HTML converter. The converter itself 
is a pipeline which accomplishes the translation of mathematical expressions included 



  

in SBML models from MathML to HTML and so makes the their visualization possible 
to view on a web browser [14 - 17]. Through the interface which allows the setting of 
initial conditions and XPPAUT internal options, the PHP level starts a simulation using 
XPPAUT in the grid platform.  

2.1 User Interface  

The simulation system has an interactive interface where users can set different values 
for species concentration, parameters and XPPAUT internal options. This interface 
allows users to explore model behaviors starting from different initial conditions or 
setting the solver in different way, by changing, for example, the integration method. 
Algebraic rules are listed to lead the user to a correct initialization.  

In the SBML file model species concentrations and parameters values could be 
initialized internally by assignment rules: in this case for species or parameters the 
string “AssignRule” is placed in the input form associated with it. The XPPAUT input 
file is created by adding users selections to an existent XPPAUT input file, stored in 
the database, which contains equations and other information for a correct simulation.  

 

 
 

Figure 1: The simulation engine workflow. At the bottom, there is the system used to simulate the models; in 
the middle, the software pipeline that manages the system; at the top, the user interface. 

2.2 The distributed approach 

The user interface works on the top of a set of script that are delegated for job 
submission, the monitoring and the retrieval of the results. Using this solution, the 
simulation can be coordinated by a single server, on which the grid User Interface 
software is installed, obtaining a scalable system according to the grid performance. 

For each set of ODE system simulation which must be calculated, a grid job is 
submitted: it means that according to the user parameters selected a JDL script is 
dynamically generated with the information about the input and the related job 
requirements. The number of equations which have to be simulated in a specific group 
is related to the computation time needed for each job and then to the scalability of the 
system. The jobs are routed by the Resource Broker to the best Computing Element that 



  

is available at the moment. The ODE solver system is deployed on the grid node at job 
execution time and the results are retrieved to the User Interface from where the 
execution of the jobs are automatically monitored and, in case of failure, re-submitted 
to the grid infrastructure. 

When a simulation job is finished the result can be downloaded and quickly 
viewed on a 2D plot. A graphical interface allows the users to plot one or more of the 
species involved in the model on the y axis, while on the x axis generally the time is 
indicated. Thus, concentration versus time or concentration versus concentration plots 
can be generated. Graphs are images exported in png file format using Gnuplot [18]. 

3. Results 

As test case let us consider a model of G1 to S transition in mammalian cell cycle 
process [3]. This model is essentially focused on the main key points which 
characterize the G1 to S transition in mammalian cells: the restriction point R and the 
progression towards the S-phase. These points involves a small set of proteins, 
including the transcription factor family of E2F/DP dimers (E2F1-6, DP1 and DP2), 
the pocket protein family, including the tumor suppressor pRB (retinoblastoma), which 
are the central regulators of the mammalian cell cycle. In particular, E2F/DP regulate 
the transcription of a large number of genes which have a crucial role in the G1 to S 
transition, while pRB has a crucial role as the main inhibitor for the progression if the 
cell cycle from the G1 phase to the DNA synthesis phase (S-phase).  

The model requires to be manually written in SBML format using JigCell Model 
Builder [11]. By accessing the Cell Cycle Database web interface the user can explore 
and simulate the model. The models stored in our resource can be analyzed by the user 
from two different point of view: the first concerns the general information relating to 
the model, mainly regarding the model publication paper, the second focuses mainly on 
the information related to the SBML model data structure that makes the simulation of 
the model possible.  

Using the first possibility of exploration the user can retrieve information related to 
abstract, model wiring diagram and the list of all the proteins involved in the model 
which are linked to their Cell Cycle Database entries. The abstract of the paper is 
directly linked to E-Biosci system [19], a literature search engine developed in order to 
automatically search the scientific literature based on a description as input query. The 
E-BioSci system relies on performing a conceptual fingerprinting comparison in 
several literature databases.  

On the other hand, browsing the model information from the mathematical point of 
view, the user can explore the whole SBML data, selecting the different model 
component to visualize. In case of the G1 to S transition model user can observe 5 unit 
definitions, 1 compartment, 9 species, 41 parameters, 22 reactions, 2 function 
definitions and  9 ODEs. An example of the visualization of the equations is shown in 
Figure 2. The direct simulation of the model is possible through a specific interface, as 
described before. This interface is composed of four tables which contain species, 
algebraic rules, parameters and XPPAUT internal options such as total integration time 
or the integration method. All components are initialized with the default values. 
Algebraic rules remind the user that some species have constraints on their initial 
values, while the string “AssignRule” reminds the user that the associated species or 



  

parameter values cannot be initialized because there is an assignment rule defined in 
the model.  

When the simulation has been correctly completed, the output retrieving and the 
results visualization are possible. User can choose the species to plot on the graphs. 
The plot of the time course of pRB (labelled pRB_1) and E2F/DP (labelled E2F1_1) is 
shown in Figure 3 as an example. Even if initial conditions are different (and hence the 
quantitative solution will be different) we can conclude that the model behaviour 
calculated with our system and the one calculated in the work previously discussed [3] 
and used as test case are the same. 
 

 
 

Figure 2: ODE system from the test-case model which is shown in the user interface.  

 

 
 

Figure 3: The results plot interface, where pRB (red curve) and E2F (green curve) time course are shown. 



  

4. Discussion  

The implementation is now capable of simulating single ODE system which describe a 
specific cell cycle model stored in the Cell Cycle Database. The model simulation 
engine is able to solve a single simulation run, but it is only the preliminary step 
towards the implementation of a wider system able to estimate the model which fits 
with real biological data the best, through a parameter estimation pipeline. The best 
model that fits the experimental data in a statistical sense can be found both through 
stochastic and deterministic mathematical methods.  

In the context of stochastic approach to parameter estimation, some methods for 
global optimization can be considered. In particular, the evolutionary computation are 
population-based stochastic methods which rely on the idea of biological evolution 
[20]. The evolutionary computing methods generate solutions close to optimum by 
iteratively creating new “generations” in numerical form. Those methods are generally 
classified into three groups: Genetic Algorithms, Evolutionary Programming and 
Evolutionary Strategies, which is considered the most efficient and robust especially 
for continuous problems, like ODE systems resolution [21].   

In the case of the deterministic approach, the estimation of the best model is 
possible through linear regression, that is a statistical method of modeling through a 
linear function the conditional expected value describing the model in function of the 
parameter. The most frequent linear regression method used in systems biology is the 
method of least-squares [22], a mathematical optimization technique which attempts to 
find a function which closely approximates the data in order to find the model that best 
fits the biological measurements.  

We are implementing a system for the parameter estimation in the context of 
computational biology based on the grid technology. Our approach aims to find the 
best parameter set by computing many different simulation with the Evolutionary 
Strategy algorithm using the grid platform. This system essentially differs from the 
other grid-based parameter estimation approach [5,7] in the type of algorithm used and 
grid platform on which the computation is performed. Considering the ODE system 
describing the G1 to S transition model presented as example in the previous results 
[3], the simulation software XPPAUT needs approximately 4 seconds to achieve the 
numerical solution for 1000 time units using a Stiff integrator on a Intel Pentium 2.0 
Ghz CPU with 1GB RAM. In the case of evolutionary computation to perform the 
parameter estimation, where a population of 300 individuals for 10000 generations is 
considered, the total time spent for a single simulation takes about 140 days. 

To overcome the complexity of the parameter estimation process, which can be 
very time-consuming due to the high number of parameter combination values and 
simulations needed to fit data, the computation can be distributed on several computers 
using techniques of High Performance Computing, like grid, which makes the 
parameter estimation possible through the use of thousands CPUs.  

Through mathematical modeling the prediction of the system behavior is possible 
and also unexpected properties of the system may emerge. In particular, the simulation 
of the cell cycle pathway allows a better understanding of cell cycle control in normal 
and transformed mammalian cells which is useful to put on a more rational basis the 
discovery of anticancer drugs.  



  

5. Conclusion 

We present a grid-oriented approach to solve ODE systems describing cell cycle 
models, in order to make the numerical simulations of the biological process easier and 
more accurate. We choose to perform simulations using a High Performance 
Computing platform like the grid because our system is designed with the aim to 
estimate the best model computing many different simulations of each model. To 
accomplish this task we implement a pipeline useful to visualize the mathematical 
information related to cell cycle models and a system to simulate the whole process 
using the grid platform.  
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