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Abstract 

A noninvasive method for detection of coronary artery 

disease (CAD) with an electronic stethoscope is 

proposed. Heart sounds recorded in clinical settings are 

often contaminated with background noise and noise 

caused by friction between the skin and the stethoscope. 

A method was developed to reduce the influence of the 

noise artifacts. The diastolic parts of the heart sounds 

were divided into multiple sub-segments, where noisy 

sub-segments were indentified as sub-segments with a 

low degree of stationarity or with a high energy level. 

The sub-segments not identified as noisy were analyzed 

with an Autoregressive (AR) model, where the pole-

magnitude of the 1
st
 pole was used as a discriminating 

parameter. A test on 50 subjects showed that removal of 

the noisy sub-segments before analyses improved the 

diagnostic performance of the AR-model considerably, 

thereby reducing the influence of noise related to the use 

of a handhold stethoscope. 

  

1. Introduction 

Coronary artery disease is the top single cause of death 
in the western world.  The process of diagnosing CAD is 
comprehensive and expensive. In spite of well established 
diagnostic methods as coronary angiography and exercise 
tests, diagnostic challenges still remain. Common for the 
diagnostic tests available today is that they are costly and 
time consuming. The current study proposes a 
noninvasive method for detection of CAD with an 
electronic stethoscope. An electronic stethoscope is 
inexpensive, fast and easy to use, thus having the 
potential of becoming a tool for assessment of patients 
with risk of CAD in the early diagnostic phase. A more 
precise assessment may allow a more efficient referral 
and thereby reduce the number of demanding 
examinations. 

Previous studies have shown that heart sounds may 
contain weak murmurs caused by turbulence in 
poststenotic blood flow in the coronary arteries and that 

this turbulence related sound is a indicator of CAD [1]. 
The murmurs are rarely audible, but algorithms to 
automatically detect the murmurs through signal analysis 
have been proposed [1-6]. The acoustic component 
related to poststenotic turbulence has been found to be 
associated with increased energy in the 300-800 Hz 
frequency band [3]. Since coronary flow peaks during 
diastole the murmur intensity is also highest in the 
diastolic period.  

Prior methods developed for the detection of CAD 
used custom made sensitive and fragile recording 
equipment, which is not compatible with a clinical 
environment.  

The main dificulty related to the analysis of heart 
sounds recorded with handheld stethoscopes in clinical 
settings is that they often are contaminated with 
background noise and noise caused by friction between 
the stethoscope and the skin, see figure 1a. Several 
frequency analyzing methods like Fast Fourier transform 
(FFT), wavelet analyze, and parametric models as AR-
models has pervious been applied to indentify the 
turbulence related signal component. 

The focus of the current study is to develop a method 
for use in clinical settings and the data used in the current 
study is recorded in the clinic, with a commercially 
available electronic stethoscope.  

2. Methods 

2.1.  Data collection 

Bedside recordings were made from the left 4th 

intercostal space on the chest of 50 patients using a 

commercially available electronic stethoscope (3M 

Littmann E4000).  Each recording was 8 seconds long 

corresponding to the capacity of the stethoscope and 

transferred to a portable PC. The audio files were 

converted to 8 kHz WAV files through 3M Littmann 

Sound analysis software before analysis in MatLab.   The 

patients were referred for coronary angiography at the 

Cardiology Department at Aalborg Hospital. The 
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coronary angiography images from the patients were 

analyzed with Quantitative coronary angiography, giving 

the precise dimensions of the stenosis. Previous studies 

showed that stenosis with at least 30% diameter reduction 

is detectable through audio analysis and subjects with at 

least one stenosis of at least 30% diameter reduction were 

defined as diseased subjects in the current study. 

2.2.  Preprocessing 

The diastolic periods were indentified through manual 

analyses of the heart sounds. In total 373 diastoles were 

indentified. The diastolic segments were band pass 

filtered with a low cut-off frequency at 240 Hz and a high 

cut-off frequency at 1500 Hz. The diastolic segments 

were divided into non-overlapping sub-segments of 50 

ms duration. 

2.3.  Stationarity analysis 

The degree of non-stationarity of each sub-segment 

was measured as the variation of the instantaneous 

variance (IVar), which was estimated by filtering the 

squared amplitude of the signal with a moving average 

filter. To eliminate amplitude differences the sub-

segment were normalized by their standard deviations 

before the IVar was calculated. 
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where xSub is a diastolic sub segment,  M is the length 

of the moving average filter, which is 5 ms, N is the 

length of the diastolic sub-segment and����� is the 

standard deviation of the sub-segment.  The degree of 

non-stationarity was then calculated as the variance of 

IVar. If the variance of IVar for a given sub-segment 

exceeded a defined threshold α, then the sub-segment was 

defined as noisy and was removed, see figure 1. The 

optimal value of α was estimated in the results section. 

2.4.  Variance analysis    

   The sub-segments with high energy were indentified 

as sub-segments with a variance higher than an adaptive 

threshold. The threshold was calculated for each 

recording as the median of the variance of all sub-

segments in the recording multiplied with a threshold 

coefficient. 

&ℎ�() = β × �(,-��������� � 

  where β is the threshold coefficient and ������  is the 

variance of the sub-segments. The optimal value of β was 

estimated in the results section. 

 

 
Figure 1. a) A diastolic sub-segment with artifacts is 

divided into sub-segments which are illustrated by the 

dotted lines. b) The variance is calculated from each sub-

segment and a threshold is applied to indentify sub-

segments with high variance. c) The instantaneous 

variance of the sub-segment. d) The variance of the 

instantaneous variance of the sub-segments.  

 

2.5.  Autoregressive model 

The AR-model is a widely used modeling method in 

biomedical signal analyses. The presumption of the AR 

model is that each sample of the signal is an expression 

of a linear combination of the previous samples plus 

noise [7].  
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where y(n) is the signal to be modeled,  ap are the 

model coefficients, m is the model order and e(n) is the 

noise which is independent from the previous samples.  

In the current application the coefficients of the AR 

model were adjusted with the Burg method to maximize 

the models capacity to model the signal. Previous studies 

showed that a model order of 10 is sufficient to represent 

the signal [2] and, therefore, a model order of 10 was 
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chosen. The absolute pole magnitude of the 1st pole 

(PM1) was chosen as the discriminating parameter since 

it was the strongest discriminator in a preliminary 

analysis.  A robust PM1 parameter was calculated as the 

median of the PM1 values from all the remaining sub-

segments.   

2.6.  Performance measurement 

The performance of the different filters was measured 

by measuring the separation between the PM1 values 

from subjects with at least one stenosis and subject 

without a stenosis. The degree of separation was 

measured by the F-ratio which is the between-groups 

mean square variance divided by within-groups mean 

square variance.  

 

1 = Between Groups Mean Square Variance 
Within Groups Mean Square Variance  

  

The F-ratio was used to find the optimal values of α 

and β by measuring the separation capability of PM1 for 

a range of α and β values. The values of α and β which 

generated the highest F-ratio was chosen. The two filter 

methods were tested both in combination and 

individually and compared to an implementation where 

no sub-segments were removed before the AR-model was 

applied. In addition, the results were compared with the 

performance of the method described in [3] where a 128 

ms window in the middle of the diastolic segments was 

used for analysis.  

 

3. Results 

3.1. Optimal threshold values  

The F-Ratio’s obtained with different values of α and 
β are plotted in figure 2a and 2b. The F-Ratio increases 
with decreasing threshold α, thereby showing that a lower 
degree of non-stationarity in the sub-segments increases 
the separation capability of the PM1 parameter. However 
with an α-value of 0.5 only in average 22% of the sub-
segments were left. Removal of all sub-segments with a 
higher degree of non-stationarity and furthered lowering 
of the threshold was not possible without the risk of 
removing all sub-segments in some recordings. When 
applying the variance analysis the maximum F-ratio was 
obtained at a value of the coefficient β of 0.7, see figure 2 
b.  When the stationarity and variance filter were applied 
in combination, meaning that both non-stationary and 
high-amplitude sub-segments where removed, was the 
maximum F-ratio obtained with α =0.7 and β =0.7. 

 
Figure 2.  a) The relationship between the threshold α which 

is used to define non-stationary sub-segments, and the obtained 

F-Ratio.  b) The relationship between the energy threshold 

coefficient and the obtained F-Ratio. c-d) The percentage of 

sub-segments which was removed when the threshold was 

applied.  
 

3.2. Diagnostic performance  

Tabel 1 shows the F-Ratios obtained by the different 
methods. The largest F-ratio was generated by removal of 
both the non-stationary sub-segments and the sub-
segments with high energy. However the removal of 
either the non-stationery or the high energy sub-segments 
generates close to similar results with F-Ratio’s at 25.6 
and 23.6. The influence of removing the noisy sub-
segments is clear since the F-ratio obtained without 
removing any sub-segments is only half the F-Ratio’s 
obtained when noisy sub-segments are removed. 
Furthermore, the F-Ratio value obtained with the 
previously used method, where the entire mid-diastolic 
segment is analyzed as one segment, was considerable 
lower than the F-Ratios obtained by each of the multiple 
sub-segment methods. 
 
Tabel.1 The F-ratio obtained by different methods. 

Filtering methods F-Ratio P-value 

Removal of both non-stationary and high 
energy sub-segments 

26.9 4.97e-9 

Removal of non-stationary sub-segments 25.6 9.90e-9 
Removal of high energy sub-segments 23.2 3.68e-8 
No removal of noisy sub-segments 12.6 2.77e-5 
A 128 ms window is analyzed in the 
middle of the diastole. 

6.1 0.0039 

 

Figure 3 shows the receiver operating characteristic 
(ROC) curve of diagnostic performance with optimal 
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threshold settings using both the stationary filter and the 
high energy filter. The optimal classification yields a 
correct classification of 82%, with 86.2% sensitivity and 
76.2% specificity.      

 
Figure 3.  ROC curve showing the diagnostic performance, 

after excluding non stationary and high-energy sub-segments.   

 

4. Discussion and conclusions 

The results show that dividing the diastolic period into 
multiple sub-segments and the removal of the noisy sub-
segments increases the capacity of parameter PM1 to 
separate diseased subject from non-diseased subjects. The 
noisy sub-segments can be indentified through analysis of 
either stationarity or variance level. Surprisingly, the 
maximum separation was obtained with very low values 
of the thresholds that define the degree of acceptable non-
stationarity and the level of acceptable energy in the sub-
segments. The implication of the low threshold values is 
that close to 80% of the sub-segments were defined as 
noisy and subsequently were removed before further 
analysis, see figure 2c and 2d. When 80% of the sub-
segments are removed it is likely that the removed sub-
segments not only include powerful friction spikes and 
dominating background noise, but also more damped 
noise such as other noise from flow in other parts of the 
cardiovascular system.  

The specific values of the threshold are likely to be 
over fitted to the current dataset and will need 
adjustments in future applications.    

Even if the thresholds values are over fitted to the 
current dataset does the correct classification rate at 82% 
implies that the proposed method using a hand-held 
electronic stethoscope is capable of indicating the

 presence of CAD. The threshold filter methods proposed 
in the current study provides a platform for future 
analysis of heart sounds recorded by a handhold 
electronic stethoscope. 

Acknowledgements 

The authors thank the personnel at the Department of 
Cardiology at Aalborg Hospital for their cooperativeness 
in the data collection process.  

References 

[1] Semmlow J, Welkowitz W, Kostis J, Mackenzie JW. 

Coronary artery disease--correlates between diastolic 

auditory characteristics and coronary artery stenoses. IEEE 

Trans.Biomed.Eng. 1983 Feb;30(2):136-9.  

[2] Akay M, Semmlow JL, Welkowitz W, Bauer MD, Kostis 

JB. Detection of coronary occlusions using autoregressive 

modeling of diastolic heart sounds. IEEE 

Trans.Biomed.Eng. 1990 Apr;37(4):366-73.  

[3] Akay YM, Akay M, Welkowitz W, Semmlow JL, Kostis 

JB. Noninvasive acoustical detection of coronary artery 

disease: a comparative study of signal processing methods. 

IEEE Trans.Biomed.Eng. 1993 Jun;40(6):571-8.  

[4] Shen D, Semmlow JL, Welkowitz W. Automated 
identification of artifact-free diastolic heart sounds. 
Automated identification of artifact-free diastolic heart 
sounds. Proceedings of the Annual Conference on 
Engineering in Medicine and Biology: IEEE;1990; 569-70. 

[5] Akay M. Noninvasive diagnosis of coronary artery disease 

using a neural network algorithm. Biol.Cybern. 

1992;67(4):361-7.  

[6] Akay M, Welkowitz W. Acoustical detection of coronary 

occlusions using neural networks. J.Biomed.Eng. 1993 

Nov;15(6):469-73.  

[7] Rangayyan RM, Biomedical Signal Analysis: A Case-

Study Approach. New York. Wiley-IEEE Press; 2001. 

 
Address for correspondence 
 
Samuel Emil Schmidt 
Department of Health Science and Technology,  
Aalborg University 
Fredrik Bajers Vej 7 E1-207 
9220 Aalborg Ø 
E-mail address: sschmidt@hst.aau.dk 

 

020406080100
0

20

40

60

80

100

S
p
e
c
if
ic

it
y
 (

%
)

Sensitivity (%)

760


