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Abstract 

Segmentation using deformable model-based 

approaches has become a common application in 3D 

medical image analysis, as it provides a fast and robust 

method to detect structures, e.g. organs, fully-automated 

after initialization. However, some earlier approaches in 

some cases did not converge in the segmentation process 

even on rather good datasets or showed major variations 

in the segmentation results. This work presents the 

application of a shape model enhanced with the 

possibility of free deformation with respect to local grey 

value distributions, used to automatically detect the end-

diastolic and end-systolic left heart ventricle (LV) in 3D 

MRI images after a short user interaction, thus to 

calculate the heart stroke volume.  

1. Introduction 

Segmentation of medical images is a significant task to 

aid medical diagnostics and therapy planning. Commonly 

this segmentation is done manually in 2D cut planes, or 

with the help of semi-automated tools. As the resolution 

of medical images is constantly increasing, this task gets 

more and more time-consuming and irreproducible. 

Therefore, robust and fast automated methods are needed 

to keep up with the advances in image acquisition 

technology. Active shape models (ASMs), as first 

introduced by [1], represent such a method. 

Assessment of ventricular function or volume via 

different imaging techniques is a common task in medical 

examination of the cardiac system. For quantitative 

analysis, segmentation is often virtually inevitable. Over 

the last decade, active shape models became more and 

more promising in the effort of fully automated 

segmentation. A detailed overview of different variations 

and approaches to ASMs for cardiac segmentation can be 

found in [2]. ASMs, especially combined with the 

possibility of free deformation, provide an excellent 

method for segmentations of more complex shapes. In 

this paper, a deformable shape model is presented, which 

already showed superior results in CT liver segmentation 

[3], and has now been adapted for MRI left ventricles. 

The used model shows stable convergence on all 

available datasets, providing excellent segmentation 

results. 

2. Methods 

2.1.  Deformable shape model 

The underlying model is based on a statistical shape 

model (SSM), gained from principal component analysis 

of training data, i.e. representing the mean shape and the 

strongest modes of variation occurring in the training 

data. Subsequently, local grey value gradient profile 

appearance models are generated for each landmark. The 

employed deformable model is a discrete triangular mesh 

of the same topology as the SSM. During the 

segmentation progress, internal forces drive edge lengths 

and angles towards the values of the best-representing 

SSM, i.e. the closest valid shape. At the same time, 

external forces pull vertices towards the optimal surface 

as extracted from image data. In contrast to previous 

approaches, not the individual best solutions for each 

landmark are used; instead, a graph-based algorithm for 

optimal surface detection that delivers a globally optimal 

solution is employed [4]. To increase both segmentation 

speed and accuracy, the model search is applied 

hierarchically on four resolutions of a beforehand 

calculated Gaussian image pyramid, from coarse to fine 

resolution, until the convergence criteria for the particular 

resolution is met.  

The deformable shape model has been integrated into 

the Medical Imaging Interaction Toolkit (MITK) [5], and 

is able to segment images almost fully automated: The 

only necessary user interaction is the choice of a roughly 

estimated search starting position in the image, which in 

no case took more than 30 seconds per image. The same 

starting position could be used for both the segmentation 

of the diastole and the systole.  

Although the initial training of an ASM is quite time-

consuming, this has only to be done once, and the actual 

computation time of the segmentation was less then one 

minute per volume. 
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2.2.  End-diastolic LV 

The dataset used for evaluation of the segmentation 

quality consists of 22 MRI images of the upper torso, in 

which the left ventricle has been manually per-segmented 

by medical experts. The images have resolutions of 

256x256x160 (19 images), 128x128x88 (1 image) and 

128x128x80 (2 images), respectively. As multiple gold 

standard segmentations per image were available, but 

were varying distinctly in some cases, these where 

averaged for each single image using a STAPLE ground 

truth image filter, as described in [6]. 

Because not enough data was provided to separate the 

dataset in training and evaluation parts, leave-one-out 

tests were performed. Thus, 22 shape models were built, 

and in each case evaluated on the single volume not 

included in the build process. 

2.3.  End-systolic LV 

This dataset consists of only 21 MRI images and the 

corresponding pre-segmentations. The images have 

resolutions of 256x256x160 (18 images), 128x128x88 (1 

image) and 128x128x80 (2 images), respectively. All 

other properties are equal to the diastolic LVs. So this 

time, 21 models were trained and leave-one-out tests 

were performed. 

2.4.  Volumetry 

The heart stroke volume (SV) is calculated as the 

difference between the segmented end-diastolic and end-

systolic ventricle volumes, respectively. The results were 

compared with the differences of the given gold standard 

segmentations. In 13 cases, also direct measurements of 

the stroke volume via velocity-encoded cine MR imaging 

(VEC MRI, see e.g. [7]) were available and used for 

comparison. 

3. Results 

3.1.  Segmentation 

The segmentation results are shown in Table 1 and 2. 

Additionally, graphs of the average surface distance 

results are given in Fig. 1 and Fig. 4. An example of end-

diastolic LV segmentation images is shown in Fig. 2. An 

example of a 3D view can be seen in Fig. 3. 

As segmentation quality measures, the average 

symmetric point-to-surface distance and the symmetric 

RMS point-to-surface distance are given. These are 

define as follows: The distance from a point x  to a 

surface Y  is given by  
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where .  denotes the Euclidian distance. When defining 

surface distances, we have to make sure to respect 

symmetry, a precondition for every metric. Thus, the 

average surface distance is defined as: 
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where .  denotes the area of a surface. In a similar 

fashion, the root mean squared surface distance 

(equivalent to the RMS error) is defined as 
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The last used metric is the Dice coefficient, which is a 

measure to quantify the similarity between two regions 

A  and B , based on the volumetric overlap: 
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where .  denotes the volume of a region. The Dice 

coefficient yields 1 if both shapes are identical and 0 for 

no overlap at all. To transform the measure into an error 

metric, the obvious way is to negate it. Thus, the 

volumetric error based on the dice coefficient is defined 

as: 

 

1D DV C= −  

 

These quality measures are compared to recent 

publications. 

 

No result data was omitted due to divergence of the 

model search.  

The clearly higher point-to-surface error of the end-

systolic LVs compared to the end-diastolic is up to one 

main cause: 

The end-diastolic volumes have a noticeable higher 

contrast due to the blood movement in the systolic 

volumes. Therefore, the diastolic ventricle boundary 

gradients are more significant and segmentation results 

are better. 
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Table 1. Segmentation results for the end-diastolic LVs. 

Results are given as mean ± standard deviation (µ±j). 

Segmentation Davg[mm] DRMS[mm] VDice[%] 

Deformable 

model 
0.95±0.21 1.58±0.42 6.4±1.2 

Lötjönen et al. [8] 2.01±0.31 n.a. n.a. 

Kaus et al. [9] 2.28±0.93 n.a. n.a. 

van Assen et al. 

[10] 
1,97±0.54[1] n.a. n.a. 
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Fig. 1. Distribution of the segmentation results for the 

end-diastolic LV (sorted). 
 

      

 

Fig. 2. Example of sagittal, transversal and coronal view 

of the median completed end-diastolic LV segmentation. 

The resulting surface is shown as a black line. 

 

Fig. 3. 3D view of the segmentation result as a wireframe 

mesh. Also, the cut planes from Fig. 3 can bee seen. 

Table 2. Segmentation results for the end-systolic LVs. 

Results are given as mean ± standard deviation (µ±j). 

Segmentation Davg[mm] DRMS[mm] VDice[%] 

Deformable 

model 
1.69±0.68 2.48±1.01 16.2±5.3 

Kaus et al. [9] 2.76±1.02 n.a. n.a. 

van Assen et al. 

[10] 
1,97±0.54[1] n.a. n.a. 

 
[1] van Assen et al. do not state the cardiac cycle stage they used 

their segmentation on. 
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Fig. 4. Distribution of the segmentation results for the end-

systolic LV (sorted). 
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3.2.  Volumetry 

In Table 3, the heart stroke volume results, compared 

with the direct measurement and with the calculated gold 

standard are given, showing the result of the computation 

in terms of the mean relative error (The relative error of 

the single results compared to the appropriate gold 

standard, averaged over all results). Also, the Pearson 

product-moment correlation coefficient is stated, giving a 

dimensionless measure of the linear correlation between 

two random variables. 

 

Table 3. Results of the stroke volume computation, 

compared with two different methods of gold standard 

SV . In both cases, the 13 images for which the direct 

measurement was given are evaluated. 

SV compared to: 

Direct 

Measurement 

Difference of gold 

standard 

segmentations 

Mean rel. error 

[%] 
12.4 8.4 

Pearson’s 

correlation 

coefficient 
0.89 0.97 

 

4. Discussion and conclusions 

The deformable shape model presented in this paper 

shows the capability to fastly and robustly detect and 

segment the left heart ventricle, and is therefore 

applicable in a wide range of clinical applications in 

diagnosis and therapy aid. The free deformation terms 

used in this approach help to better adapt the shape model 

to the given data than a model strictly constricted to 

trained shapes. 

 

According to experience, it is difficult to compare 

applications of shape models from different groups, as 

the presented models are almost always specialized for a 

certain purpose. The model introduced by [10], for 

example, is particularly suitable for sparse volume data.  

Nevertheless, the segmentation result achieved in this 

work has to our best knowledge not been met by any 

other prior approach.  

Both segmentation and volumetry results show 

variations from the gold standard, but approximately in 

the magnitude the various gold standards differ between 

each other.   

 

Future plans include the evaluation of an already 

implemented real-time user interaction possibility to 

further increase segmentation quality and usability. This 

is especially useful if structures emerge in the volumes 

that were not included in the training shapes, e.g. 

congenital heart diseases or large tumors. Furthermore it 

shall be made possible to automatically segment 

complete (4D-) time series all of a sudden, including the 

calculation and visualization of the temporal deformation 

vector field. 
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