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Abstract 

A novel power-line interference (PLI) detection and 

suppression algorithm is proposed to pre-process real-

time electrocardiogram (ECG) signals. This algorithm 

first compares the energy at the harmonic frequency 

against the energy at neighboring frequencies of the ECG 

power spectrum, and employs an optimal linear 

discriminant analysis (LDA) algorithm to determine 

whether PLI interference exists in the ECG signal. If the 

presence of PLI is detected, it then applies a recursive 

least square (RLS) adaptive notch filter to suppress the 

interference. Extensive simulation results indicate that 

the algorithm consistently exhibits superior performance 

in terms of less ECG distortion, faster convergence  rate 

and numerical stability. 

1. Introduction 

Power-line interference (PLI) is a significant source of 

noise during bio-potential measurements [1]. For 

example, the presence of PLI would make it difficult to 

locate the specific positions of Q, S and T complexes in 

compromised electrocardiogram (ECG) signals.  

PLI noise often consists of one or few harmonics 

whose frequencies may vary in time due to power line 

frequency jitters. Thus, some adaptive filtering 

algorithms have been proposed for ECG signal PLI 

suppression [2-5]. However, these existing PLI rejection 

adaptive filters are developed with an implicit assumption 

that the presence of PLI noise in the ECG signal has 

already been detected, perhaps by a human operator. For 

real time and on-line ECG processing applications, often 

it is not feasible to manually verify the presence of PLI 

noise over long duration. On the other hand, improper 

application of PLI suppression algorithms to clean ECG 

signals in the absence of PLI noise may distort the 

resulting ECG morphology, and cause performance 

degradation of subsequent ECG processing.  

In this paper, we propose a fully automated PLI 

detection algorithm and a recursive least-squares based 

adaptive notch filtering algorithm for PLI suppression. 

The PLI detection algorithm will be applied to incoming 

ECG signal to assess the presence of PLI. The PLI 

suppression algorithm will be applied only after positive 

detection of the presence of PLI noise. As such, PLI 

suppression is judiciously applied to the ECG signal, and 

the resulting waveform would subject to less undesirable 

distortion. The averaged computation load may also be 

alleviated. 

2. Methods 

A block diagram of the proposed PLI detection and 

suppression technique is depicted in Figure 1. It consists 

of a PLI detection module and an adaptive filter module. 

The flow of ECG signal in Figure 1 depends on the 

outcome of PLI detection. In the absence of PLI noise, 

the ECG signal will by-pass the adaptive filter 

unchanged. Only during a positive PLI detection, the 

adaptive notch filter will be applied to suppress the PLI 

noise. 

 
Figure 1 The block diagram of the proposed method. 

2.1. PLI detection 

The overall PLI detector structure is highlighted with 
the solid line labeled ギPLI detectorギ in Figure 1. We 
assume that the presence of PLI needs to be verified once 
per T seconds (a decision period, T equals 1 in this 
study). For convenience, we will also assume there is 
only one fundamental frequency (nominally, 50 or 60 Hz) 
in the PLI. This structure can easily be generalized to 
situations with more than one fundamental frequency. 
The detection algorithm can further divided into two 
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parts: feature extraction and pattern classification. 
In the presences of PLI, the power spectrum of the 

corrupted ECG signal will have a narrow peak at the 

corresponding frequency that is much larger than power 

spectrum energy at surrounding frequencies. To exploit 

this characteristic feature of PLI, the observed signal x[n] 

is filtered with two adaptive IIR bandpass filter, HN (z, 

ρN, a) and HW (z, ρW, a) in parallel. Both filters have the 

same transfer function formula with different values of 

the parameter ρ (0 < ρ < 1) which we will denote as ρN 

and ρW: 
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with a覿−2 cos(2π⋅f0/fS). 

Such a filter has a pair of poles located at 

ρ⋅exp(±j2π⋅f0/fS) and a pair of zeros at ±1. The symbol fS 

denotes the sampling frequency and f0 is the fundamental 

frequency of the PLI. The constant A is chosen so that 

||H(exp(j2π⋅f0/fS),ρ,a)||覿1. For f0覿60 Hz and fS覿360 

Hz, we choose ρN = 0.99 and ρW = 0.9 which yield a 

band-width of 1.1Hz and 12 Hz respectively. We 

compute the RMS  values of the output of each BPF 

during each decision period to yield a 2-dimensional 

feature vector qk = [ q1[k]  q2[k] ]T. 

We choose the Fisherガs linear discriminant analysis 

(LDA) in this study for its simplicity and computational 

efficiency. The LDA classifier is briefly described as 

follows [6]. 

Given a feature vector q, a linear classifier computes a 

weighted linear combination of the feature vector q as 

follows. 

r = wTq + w0, (1) 

where, w is a weight vector and w0 is an offset scalar.  

The optimal LDA classifier is derived to maximize the 

Fisherガs linear discriminant function 
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where the between-cluster scatter matrix SB and the 

within-cluster scatter matrix SW are defined as 

SB = (m1−m2) (m1−m2)
T (3) 
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     The symbol mi denotes the sample mean of class i and 

Ni is the number of feature vectors in class i. The solution 

of w that maximizes J(w) can be found as  
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and the offset w0 in equation (1) can be found as 

w0 = − wT (N1m1 + N2m2)/(N1 + N2). (6) 

2.2. PLI suppression filter 

     The PLI suppression filter we proposed is an adaptive 

IIR notch filter of which the harmonic frequency jitter is 

tracked using a recursive least-squares (RLS) updating 

algorithm. The block diagram of the filter structure is 

shown in Figure 2. We assume that x[n] consists of the 

clean ECG signal s[n] and PLI noise p[n], and e[n], as the 

output of the narrow band-pass filter is an estimate of the 

PLI noise. Thus, 

y[n] = x[n]−e[n] = s[n]+p[n]−e[n] (7) 

is an estimate of the clean ECG signal s[n]. Assume that 

s[n] and  

r[n] = p[n] − e[n] (8) 

are uncorrelated, and that r[n] is zero mean, one has 

E{|y[n]|2} = E{|s[n]|2} + E{|r[n]|2}. (9) 

221

2

1

11
)( −−

−

⋅+⋅⋅+
−

⋅=
zza

z

A
zH

N ρρ

 
Figure 2 The block diagram of the proposed adaptive 

filter. 

If one modifies the value of a in the band-pass filter, it 

is possible to reduce the term E{|r[n]|2}, but not the terms 

E{|s[n]|2} which does not consists of any energy in that 

particular frequency. As such, minimizing E{|y[n]|2} will 

have the equivalent effect of minimizing E{|r[n]|2}.  

To achieve this goal, note that  
2 1

[ ] [ ] [ ] [ 1] [ 2] { [ ] [ 2]}
N

y n x n a n e n e n x n x n
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(10) 

where we labeled the parameter “a” as a[n] to 

emphasize the fact that it will be updated at each step n.  

Define w[n] = −ρ ⋅a[n], u[n] = e[n−1], and  
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then y[n] can be expressed as a single tap adaptive filter 

][][][][ nunwnxny t ⋅−=  (12) 

Define an instantaneous cost function つ(n) at iteration 
n as 
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where そ (0 < そ < 1) is a forgetting factor which is 

usually chosen to be very close to unity. The optimal 

solution w can be found by setting the gradient of つ(n) 

with respect to w to 0. This leads to 
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Now define two scalar quantities 
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Then the optimal tap weight of the filter can be found 
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as 
ˆ[ ] [ ] [ ]               [ ] 0w n z n n nϕ ϕ= ≠  (17) 

    A recursive update formula for inverse of ϕ[n] can also 

be derived by applying the matrix inversion lemma [7]:  
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This expression can further be simplified as: 
p[n] = λ−1⋅ p[n−1] − λ−1⋅k[n]⋅u[n]⋅p[n−1]. (19) 

where p[n] = ϕ−1[n], and  
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Substitute above into equation (17), the optimal tap 

weight can be expressed as follows 
{ }. ][]1[ˆ][][]1[ˆ][ˆ nunwnxnknwnw t ⋅−−⋅−−=  (21) 

3. Results 

We evaluate the effectiveness of the PLI detection 

algorithm using MIT-BIH ECG database, and compare 

the performance of the proposed RLS PLI suppression 

filter with existing adaptive PLI suppression filters. 

3.1. Performance evaluation of the PLI 

 detection 

The MIT-BIH arrhythmia database is the most widely 

used ECG signal database in public domain [8]. In 

general, ECG signals in this database are considered very 

clean in terms of PLI noise. However, as noted in [9], 

there is indeed evidence of tiny PLI noise in some of the 

data record. We have manually examined the power 

spectrum of the ECG signal in the entire MIT-BIH 

arrhythmia database over individual short segments, and 

label each record with one of two labels: ギwith 60-Hz 

PLIギ and ギwithout 60-Hz PLIギ.  

We apply the LDA-based PLI detector to make a 

decision once per second. Thirty-minute length for each 

record in the database is adopted for analysis, it thus 

yields 1800 2×1 feature vectors for each record. The 

scatter plot of the total feature vectors is demonstrated in 

Figure 3 with ギ+ギ sign representing the features extracted 

from the records deemed corrupted by PLI, whereas the 

ギ×ギ sign indicating those from clean records. The LDA-

based PLI detector yield a linear decision boundary as 

illustrated in Figure 3 in the form of a straight line. We 

then project each of the feature vectors into the subspace 

orthogonal to the decision boundary to compare the 

values of r. 

Given a particular threshold, we can compute the 
number of false negative and false positive detections as 
well as true positive and true negative detections. These 
statistics can then be converted into two commonly used 
performance criteria, specificity and sensitivity. Using 
different thresholds, different values of specificity and 

sensitivity can be computed. By connecting these pairs of 
values, the receiver operating characteristic (ROC) curve 
can thus be derived and is demonstrated in Figure 4. It is 
highly desirable that the ROC curve is as close to the 
upper left corner as possible. The scale of the Y-axis 
(sensitivity) is enlarged to emphasize the specificity 
remains at unity with a sensitivity value exceeding 
99.8%, and this proves the PLI detector can attain our 
requirement even in ECG signal with only tiny PLI. 

 
Figure 3 The scatter diagram for the feature vectors 
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Figure 4 The ROC curve from the projection 

distribution. 

3.2. Performance test of the RLS adaptive 

 filter 

Although some adaptive filtering techniques have been 
proposed for removing PLI in ECG signals [3-5], most of 
them used artificially corrupted ECG for the simulation 
purpose. Few studies have been evaluated by using 
practically PLI-corrupted ECG signal. In this study, a 
lead-II ECG signal is measured by a physiological signal 
acquisition system (MP30, BioPac System Inc.) at a 
sampling frequency of 500 Hz from a 23-year-old male 
subject in supine status with the power mains across him 
parallel at a distance of 110 cm.  

The filtering results in time- and frequency-domain are 

gathered and shown in Figure 5. The illustrations from 

top to bottom in each subfigure are the results of Pei and 

Tsengガs method [3], Soガs method [4], Ziarani and 

Konradガs method [5] and the proposed method, 

respectively. In this experiment, the parameters for 

existing methods are selected according to the values 

suggested in the original paper, whereas those for the 

proposed adaptive filter are ρ = 0.985 and そ = 0.995. It is 

obvious the proposed adaptive filter, whose results are 

demonstrated at the bottom in each subfigure, can offer a 

competitive filtering performance and a faster numerical 

convergence than the existing methods with the selected 
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parameters. 
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Figure 5 Filtered results in time- and frequency-domain. 

4. Discussion and conclusions 

PLI is a major interference of bio-potential 

measurement. There have been many studies devoted to 

the elimination of PLI in ECG signal processing; 

however, it is still a challenging problem due to its time-

varying characteristics.  

Adaptive filtering technique is a potential method to 

remove the PLI contaminated in ECG signals. The prime 

deficiency for existing methods is the filtering function 

will act even when the input signal is not contaminated 

by PLI. To surmount this deficiency, a novel structure 

contains a LDA-based PLI detector and an adaptive filter 

is presented in this study. Both the theoretic analysis and 

the computer simulation are given for the proposed 

structure. The statistical characteristics which are 

necessary for the LDA-based PLI detector is derived with 

the aid of MIT-BIH arrhythmia database, and it is 

verified that the PLI detector has a high sensitivity and 

high specificity even in slightly PLI contaminated signals 

such as those in MIT-BIH arrhythmia database. The PLI 

detector is designed to check PLI once per second, and 

the filtering function will delay one second after the PLI 

is detected. Practically corrupted ECG signal has been 

used in computer simulation to verify the feasibility of 

the presented method. From the simulation results, the 

proposed adaptive filter can support the task of 

eliminating PLI with fast numerical convergence; this 

filter is computationally efficient and has a competitive 

filtering performance compared with existing methods as 

PLI being detected in the ECG signal. For the proposed 

structure, there will be no filtering action as no PLI is 

detected, and this is what existing methods being 

deficient.  

The elimination of sinusoidal interference in an 

observed signal is an important issue in many areas. PLI 

may be one kind of such interference that appears most 

popularly. PLI in practical case may consist of the 

fundamental component and its harmonics. This study 

focuses on the elimination of the fundamental 

component. The proposed structure shown in Figure 1 

may be modified with the blocks for filtering harmonics 

being included in parallel to serve the purpose of 

eliminating severe PLI where harmonics may be present. 

The RLS algorithm has been demonstrated to have better 

performance than traditional LMS algorithm with faster 

convergence [7]. However, this improvement in 

performance is acquired at the expense of increased 

computational complexity [7]. But, the iteration processes 

included in the proposed RLS adaptive filter contains 

only simple multiplication/division and 

addition/subtraction. The total computational complexity 

is as simple as that of traditional LMS algorithm. For 

these properties, the proposed structure has the potential 

to eliminate the other kind of sinusoidal interference in 

different areas, e.g., the cases of interference with 

multiple sinusoids and sinusoidal interferences with fast 

changing characteristics. 
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