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Abstract

Nowadays, there exist different approaches to cancel out
noise effect and baseline drift in biomedical signals. How-
ever, none of them can be considered as completely satis-
factory. In this work, an artificial neural network (ANN)
based approach to cancel out baseline drift in electrocar-
diogram signals is presented. The system is based on a
grown ANN allowing to optimize both the hidden layer
number of nodes and the coefficient matrixes. These ma-
trixes are optimized following the Widrow - Hoff Delta al-
gorithm, offering much lower computational cost that the
traditional back propagation algorithm.

The proposed methodology has been compared with tra-
ditional baseline reduction methods (FIR, Wavelet and
Adaptive LMS filtering) making use of cross correla-
tion, signal to interference ratio and signal to noise ra-
tio indexes. Obtained results show that the ANN-based
approach performs better, with respect to baseline drift re-
duction and signal distortion at filter output, than tradi-
tional methods.

1. Introduction

The Electrocardiogram (ECG) is a graphical represen-
tation of the electrical activity of the heart that offers in-
formation about the state of the cardiac muscle. With Fil-
tering techniques applied in ECG it would be possible to
improve the diagnosis of some diseases of the heart and
diverse pa-thologies [1]. The bandwidth of the acquiring
system is usually from the 0.05Hz to 100Hz with almost
linear response, causing no distortion of the pulse wave-
form. However, distortion may arise from the movement
of the subject respiration

The baseline variations take place due to several factors,
like the movement of the patient during the acquisition of
the electrocardiogram, breathing, and changes in the im-
pedance of the electrodes. These variations suppose an in-
terference of low frequency and amplitude that must be re-
duced in order to not change the last results. The frequency
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breathing components are usually below 0,8 Hz. Some re-
searchers attempt to suppress baseline wander with high
pass filter, which introduces nonlinear phase distortion and
the key points displacement. To preserve phase informa-
tion, the symmetric FIR digital filter is designed, but it
does very little to attenuate low frequency baseline wan-
der [2, 3]. Other authors [4, 5] have used adaptive filter
to remove the ECG baseline wander. Similarly, adaptive
filters and Wiener filters have been of limited value in the
absence of prior knowledge of the physiological signal and
its baseline drift [6, 7]. The use of Wavelets [8, 9] has been
another possibility in order to eliminate baseline noise, ob-
taining quite acceptable results until a frequency of 0.2Hz.
The method proposed has not been applied in the cancella-
tion of baseline noise in ECG signals yet. This system has
two important advantages: to provoke low signal distortion
and to reduce baseline noise. Besides, it can be applied to
a wide range of signals.

2. Materials

The electrocardiography treated signals validation re-
quires a set of signals which will have to cover the patholo-
gies, leads, etc. For this study, two types of signals were
used: real recordings from the PhysioNet Database [10],
and synthetic signals. The sampling frequency used is
1kHz.

Table 1. Signals used for the study

N¢ of Registers  Time (seg)
Synthetic 200 1049
Real+noise 550 106

550 recordings with different pathologies have been ob-
tained from PhysioNet with different types of QRS mor-
phologies.

Synthetic signals with different noises have been gene-
rated making use of the ECGSyn software [10]. White
(myoelectric, thermal, etc.) and baseline noise are in-
cluded in these registers.
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3. Methods

3.1. Neural networks

The neuronal perceptron multilayer network (M LP)
using the algorithm of backpropagation has been applied
to diverse practical problems [11]. Perceptron multilayers
method consists of at least three layers: A hidden inpuy
layer, one or more hidden layers and an output layer.

A way to consider the optimal number of nodes in the
hidden layer is to stop the training after a certain number
of iterations and to determine how many signals were fil-
tered with the present number of neurons used in the hid-
den layer. If the result of this test is not satisfactory it will
add one or more neurons in the hidden layer to improve
the performance of the network. In these cases, the net-
work must be completely trained [11].

An alternative that seems more attractive is the deve-
lopment of increasing networks in which nodes are added
in the hidden layer in systematic form during the learning
process. With this idea, diverse structures have been pro-
posed such as the increasing network cascade correlation
[12], as well as neural networks [13, 14, 15].

3.2. Proposed system

The proposed system consists initially in a structure
similar to the neural network ADALINE (ADAptive LI-
Near Element) [16], which is used like initial structure be-
cause it is simple and easy to optimize using the algorithm
of square minimums average, LMS [13]. It has had ini-
tially an input layer, one hidden layers and an exit layer,
where they will be added neurons in the intermediate layer.

When the network has converged, if the operation ob-
tained by the system is not the required one, a neuron is
added in the hidden layer. In this case, the weights (w) that
connect the input layer with the nodes of the intermediate
layer, are congealed (these weights have been previously
trained). The gains (b) that connect the hidden layer with
the exit layer are adapted, as well as the weights (w) that
connect the input layer with the neuron added in the hid-
den layer. The ANN is adapted using the Widrow - Hoff
Delta algorithm which has obtained good results.

This new structure has got a special characteristic: it
grows while it learns. It means that the neurons in the hid-
den layer are added one to one and their weights and gains
are adapted. Besides, the weights of the input layer are
conserved in the learning network. This mechanism, al-
though sometimes could produce neural networks with a
sub-optimal number of neurons in the hidden layer, makes
it possible to estimate the size of the network. The pro-
posed system with two neurons added in the hidden layer
can be observed in figure 1.
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Figure 1. Proposed Neuronal Network with two neurons
in the hidden layer. The black coefficients (W) are cons-
tants.

3.3. Learning algorithm using the Widrow-

Hoff Delta rule

This network is a supervised learning network that needs
to know the associated values in each input. The pairs of
input/output are:

{p1,t1}  Ap2, t2}, - {pg,to} (D

where pg is the input to the network and #¢ is its corres-
ponding wished exit, when a input p is presented to this
network, the exit of the network is compared with the value
of ¢t (hoped exit) that is associated to him.

Adaptive LMS algorithm derives from the Widrow-Hoff
Delta rule [17], a network Adaline, is deduced of the
following way, according to the procedure described in
Widrow [18, 19].

e(k)p(k)
(k)
In which k shows the present iteration of the update
process, W (k + 1) is the following value that will take
the vector from weights and W (k) is the present weights
vector’s value. Present error e(k) is defined as the diffe-

rence between wished answer ¢(k) and the exit of network
a(k) = WT(k)p(k) before the update:

e(k) = t(k) = W (k)p(k)

W(k+1) = W(K) +a @)

3)

The variation of the error in each iteration is represented
by:

Ae(k) = A(t(k) = W (k)p(k)) = —p" (k) « W (k) (4)



The main characteristic of LMS algorithm is that safes
the error and reduces the average quadratic error. In order
to explain the quadratic mean error a network Adaline will
be considered and an algorithm of approximated steps will
be used, like Widrow and Hoff ; with this algorithm the
function for the mean square error is:

(t(k) = a(k))? )

In equation (5), t(k) shows the wanted exit in iteration
k and a(k) shows the exit of the proposed network; the
square error has been replaced in iteration k, therefore in
each iteration is had a gradient of the error of the following
way:

e* (k)

oe?(k Oe(k
[Vez(k)}j = ;UE]) = 2e(k) az}(i’j paraj=1,2,..R
(6)
and
oe*(k de(k
V)] gy = 2 — ey 28 )

The approach of Ve(k) found in the equation (6) is re-
placed in the equation 2 that defines the process of update
of weights for LMS algorithm; after the evaluation of par-
tial derived the update process The weights (w) and gains
(b) algorithm for this network Adaline are expressed:

wk+1) = w(k)+2ae(k)p(k) (8)
bk+1) = bk)+ 2ae(k) )
4. Results

To evaluated the performance ofthe ANN filter, a clean
pulse signal corrupted with different baselines is simu-
lated. The obtained results of the ANN approach are com-
pared with standard filtering techniques. The Butterworth
high pass digital filter is a nonlinear phase filter, so the
pulse waveform can be distorted. For this reason, a FIR fil-
ter using least squares error minimization has been selected
as classical base line technique to compare with the pro-
posed method. In this work, the biorthogonal 6.8 Wavelet
family has been used, because it shows the better results.
Table 2 lists the mean squared error (M SE) of the Wavelet
and the ANN during different signal to noise ratio (SN R)
of baseline’s frequency is 0.1, 0.2, 0.4, 0.6 Hz respectively.
FIR and LMS don’t appear in the table because they have
got bad results. Equation 10, shows M SFE where x,,:
is the exit to the system and «x the original signal without
noise.

MSE = E{||zou — z||*} (10)
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When the baseline’s frequency is less than 0.2 Hz, the
Wavelets method is satisfied. The better cross correlation
is obtained by the ANN, specially when the frequency of
baseline is less than 0.6 Hz and bigger than 0.2 Hz.

Table 2. Comparison of errors of Wavelet and Neural Net-
works

Frequency 0.1 Hz 0.2 Hz
SNR(dB) 0.8 -52 -87 08 -52 -87
Wavelet 0.01 0.03 03 0.1 0.03 49

ANN 0.1 03 05 02 03 05

Frequency 0.4 Hz 0.6 Hz
SNR(dB) 0.8 -52 -87 68 0.8 -2.8
Wavelet 3.8 19 112 23 54 134

ANN 02 04 07 08 15 37

Table 3 shows the cross correlation results. In the case
of synthetic signals, other paremeters can be measured.
In this work, the Signal to Interference Ratio (STR) has
been selected to evaluate the performance of the compared
methods. Equation 11, shows STR expression where z;,
shows the input to the system, x,,; the exit and x the ori-

E{||win — ="}

ginal registry without noise.
SIR = 20log \/2> (11)
( E{||zout — |7}

Table 3. Obtained results of the cross correlation and SIR
of baseline, average values

Methods  Synthetic Real SIR

FIR 0,92%70.03 0,9170.03 10.870.6
LMS 0,6310.32 0,6070.35 6.172.34
Wavelet  0,9470.02 0,9370.02 14.670.5
ANN 0,9770.02 0,9670.02 17.570.4

If white noise (myoelectric, thermal, etc.) is added to
baseline noise, the different techniques present more sig-
nificant differences (Figure 2). But, in all cases, the ANN
shows the best performance. The second method that
approaches the data is Wavelet. The adaptive methods as
LMS depend on the ECG and therefore its result is more
variable. Methods FIR obtain intermediate values of base-
line cancellation.

5. Conclusions

This paper introduces an approach for removing base-
line in ECG signals using ANN. The paper illustrates the
effectiveness of the approach by using examples with both
simulated and measured ECG data. The current algorithm
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Figure 2. A. Input Signal. B. FIR Filter C. LMS Filter D.
Wavelet Filter E. ANN

uses simultaneous perturbation which shows better results
for noise reduction. The target application of our algorithm
is preprocessing of ECG signals.

The signal cancellation depends on the convergence of
the method in LMS methods. The results obtained are
quite good with systems FIR and Wavelets. However, the
System based on ANN, is the better to eliminate the base-
line noise. It is possible to emphasize as well, that this
last method, it is easier to implement and it provokes low
signal distortion.

Acknowledgements

This work was partly funded by the project PAC-05-
008-1 from Consejeria de Educacion de la Junta de Co-
munidades de Castilla-La Mancha, GV06/299 from Con-
selleria de Empresa, Universidad y Ciencia de la Genera-
litat Valenciana and TEC2007-64884 from the Spanish
Ministry of Science and Education.

References
[1] Sornmo L, Laguna P. Bioelectrical Signal Processing in
Cardiac an Neurological Applications. Elsevier Academic
Press, 2005.

Lian Y, HO P. ECG noise reduction using multiplier-free
FIR digital filters. Proceedings of 2004 International Con-
ference on Signal Processing 2004;2198-2201.

Lian Y, Yu JH. The reduction of noises in ECG signal using
a frequency response masking based FIR filter. IEEE Inter-
national Workshop on Biomedical Circuits Systems 2004;
2(4):17-20.

536

Laguna P, Jane R, Caminal P. Adaptive filtering of ECG
baseline wander. Engineering in Medicine and Biology So-
ciety Proceedings of the Annual International Conference
of the IEEE 1992;508-5009.

Laguna P, Thakor P, Caminal N. Adaptve baseline wan-
der removal in the ECG: Comparative analysis with cubic
spline technique. Computers in Cardiology 1992;143-146.
Thakor N, Zhu Y. Application of adaptive filtering to
ECG analysis: Noise cancellation and arrhythmia detection.
IEEE Trans Biomed Eng 1991;38(8):785-794.

Chiu C, Yeh S. A tentative approach based on wiener filter
for the reduction of respiratory effect in pulse signals. Proc
19th Int Conf IEEE EMBS 1997;1394-1397.

Nibhanupudi S. Signal Denoising Using Wavelets. Ph.D.
thesis, University of Cincinnati, 2003.

Xu L, Zhang D, Wang K. Wavelet-based cascaded adaptive
filter for removing baseline drift in pulse waveforms. IEEE
Trans Biomed Eng 2005;53(11):1973-1975.

Goldberger AL, Amaral LAN, Glass L, Hausdorff JM,
Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng
CK, Stanley HE. PhysioBank, PhysioToolkit, and Phy-
sioNet: Components of a new research resource for
complex physiologic signals.  Circulation 2000 (June
13);101(23):e215—-220.  Circulation Electronic Pages:
http://circ.ahajournals.org/cgi/content/full/101/23/e215.
Haykin S. Neural networks: A comprehensive approach. In
IEEE Computer Society Press. 1994; Piscataway, USA.
Lehtokangas M. Fast initialization for cascade-correlation
learning. IEEE Trans on Neural Networks 1999;10(2):410—
414.

Sanchez G, Toscano K, Nakano M, Perez H. A growing
cell neural network structure with backpropagation learning
algorithm. Telecommunications and Radio Engineering
2001;56(1):37-45.

Hodge V. Hierarchical growing cell structures, trees
GCS. IEEE Trans on Knowledge and Engineering 2001;
13(2):207-218.

Schetinin V. A learning algorithm for evolving cascade
neural networks. Neural Letters 2003;17(1):21-31.

Hush DR, Horne BG. Progress in supervised neural net-
works. IEEE Signal Processing Magazine 1993;8-39.

Hui S, Zak SH. The widrow-hoft algorithm for McCulloch-
pits type neurons. IEEE Trans on Neural Networks 1994;
5(6):924-929.

Widrow B, Lehr MA. 30 years of adaptive neural networks:
Perceptrons, madeline and backpropagation. Proc of IEEE
1990;78:1415-1442.

Wang ZQ, Manry MT, Schiano JL. LMS learning algo-
rithms: Misconceptions and new results on convergence.
IEEE Trans on Neural Networks January 2000;11(1):47—
56.

[11]

[12]

Address for correspondence:

Jorge Mateo Sotos

Innovation in Bioengineering Research Group
Campus Universitario s/n, 16071 Cuenca (Spain)
E—mail: jorge.mateo@uclm.es



