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Abstract

Atrial Fibrillation (AF) is the most common arrhythmia

encountered at advanced age. The possibility of applying

signal analysis to the electrocardiogram (ECG) in order

to distinguish between terminating and non-terminating

episodes of AF would be very helpful in the regular clini-

cal practice. In this work, an analysis of spectrogram pa-

rameters organization of the Atrial Activity (AA) is car-

ried out in order to classify between terminating and non-

terminating AF episodes. The main peak frequencies, sec-

ond largest peak frequencies and their respective peak

magnitudes are extracted using cubic spline fitting and sev-

eral numerical series are constructed from them. The in-

dependent samples mean comparison of their Sample En-

tropy shows five of the constructed sequences to be relevant

in the characterization of AF. The bilateral significance ob-

tained by the Student’s t test is less than 0.005 in five of the

eight analyzed parameters.

1. Introduction

Atrial Fibrillation (AF) is the most common arrhythmia

encountered at advanced age. The prevalence of AF re-

mains lower than 1% among the general population, but

it increases considerably from sixty years old [1]. When

the AF terminates spontaneously it is classified as parox-

ysmal AF. On the contrary, when it sustains if no electri-

cal or pharmacologic cardioversion is applied it is referred

as persistent AF [1], which frequently results in perma-

nent AF [1, 2]. Permanent AF is closely related to a rising

probability of suffering embolisms and these might pro-

voke strokes [1]. Therefore, the possibility of distinguish

between paroxysmal and persistent AF by applying signal

analysis to the electrocardiogram (ECG) is of great interest

in the regular clinical practice. In this sense, recent studies

have been based on spectral analysis techniques to charac-

terize AF episodes [3]. Furthermore, time-frequency tech-

niques have also been used to characterize AF using the

surface ECG [4]. The suitability of spectral analysis of AF

episodes requires the previous separation of the Atrial Ac-

tivity (AA) from the rest of cardioelectric signals [5]. This

involves using nonlinear signal processing techniques as

average beat substraction (ABS) [6] or independent com-

ponent analysis (ICA) [7].

In this work, an analysis of spectrogram parameters or-

ganization of the AA is carried out with the aim to classify

between terminating and non-terminating AF episodes.

The analysis of these parameters is made in terms of orga-

nization of their temporal sequences. The organization is

measured by using an entropy estimator, namely Sample

Entropy (SampEn) [8, 9]. Entropy estimators have al-

ready been used in the characterization of biomedical sig-

nals different from ECG [10]. More recent studies were

centered in the organization of the main peak frequency

and spectral concentration sequences for different time-

frequency distributions of AA [11]. The innovation of the

present essay lies, on the one hand, in the application of

cubic spline fitting to the estimated spectra for a more ac-

curate extraction of spectral parameters and, on the other

hand, in the utilization of a higher number of direct and

derived parameters.

2. Database

The signal database consisted of 30 surface ECG record-

ings of AF episodes which were properly annotated by car-

diologists. Approximately half of the them were marked as

paroxysmal AF and the rest as persistent AF. The former

half is subsequently refereed as the T-group and the latter

as the N-group. These recordings were of one minute in

length and were previously extracted from 24-hours one-

lead Holter recordings of AF patients. The original sam-

pling rate (fs) of the Holter systems was 128 samples per

second, but ECG recordings were interpolated by a fac-

tor of 8 so that a fs equal to 1024 resulted. The resultant

time-domain higher resolution allowed us to obtain a bet-

ter cancellation of the QRS complex and a higher length of

parameter sequences. In the case of the T-group patients,

AF episode terminates one second after the end of the one-

minute registration. On the contrary, the termination of AF
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episode did not occur during the whole observation time in

the N-group patients.

3. Methods

As a previous step, the AA had to be separated from

the rest of the cardioelectric signal. To do such a think,

we opted to use ABS [6] because this technique works

efficiently with one-lead ECG. On the contrary, tech-

niques based on the spatial diversity of multi-lead systems,

such as blind source separation, need a higher number of

leads in order to be correctly applied [7, 12]. Therefore,

they were discarded because of constraints of the signal

database.

After the obtention of AA signals, their spectrograms

were calculated using Hamming windows of 4096 sam-

ples in length and 97% overlap. In order to facilitate the

extraction of spectrogram parameters, cubic spline fitting

was applied to each of the Fourier transforms composing

the spectrogram. The cubic spline model obtained the best

fitting in comparison with gaussian, polynomial, rational,

Weibull, power and exponential models. A cubic spline

is a piecewise function of polynomials which all have de-

gree at most three [13, 14]. The cubic spline fitting curve

from the original data was interpolated so that the resulting

frequency increment was 0.01Hz. In this way, the peaks

of the spectrogram were calculated more accurately. Only

the main peak frequency (fp1), the second largest peak fre-

quency (fp2), and their respective peak magnitudes (A1

and A2) were extracted for later use. The fitting and ex-

traction process is described in Fig. 1.

Four numerical series were directly constructed from the

aforementioned parameters while other four series were

derived from them as mathematical relations. The first of

the derived parameter is the normalized distance between

fp1 and fp2, which is expressed as:

Figure 1. Fitting and extraction process of spectral param-

eters

∆fp =
(fp1 − fp2)

fp1

(1)

The second of the derived parameters is the normalized

amplitude of the second largest peak, which is defined as:

Ā2 =
A2

A1

(2)

The deviation of the main and second peak magnitudes

from their respective expected values are also computed:

d1 = fp1 − E(fp1) (3)

d2 = fp2 − E(fp2) (4)

where E(·) represents the expected value function.

Finally, the SampEn of all theses sequences is com-

puted as a measure of mathematical organization. Both the

Approximate Entropy (ApEn) [8] and the SampEn [9]

measure the organization level of time-series. That is,

they quantify how predictable time-series are depending

on the number of times that repetitive patterns are present

in them. SampEn appears as a natural evolution of ApEn

with the aim to reduce the bias of this estimator [9]. The

definition of SampEn can be carried out as follows:

Let x[n] be a time-series of length N . The distance be-

tween any two patterns of the series, Xm(i), Xm(j), of

length m is defined as:

d[Xm(i), Xm(j)] = max(|x(i + k) − x(j + k)|) (5)

Given a pattern Xm(i), we calculate Bm
i (r) as:

Bm
i (r) =

1

N − m − 1
Bi (6)

where Bi is the number of patterns of length m that fulfill

d[Xm(i), Xm(j)] < r con 1 ≤ i, j ≤ N − m, j 6= i, and

r is the parameter that defines the criterion of similarity

between patterns [8]. Next Bm(r) is calculated as:

Bm(r) =
1

N − m

n−M
∑

i=1

Bm
i (r) (7)

Defining Am
i (r) y Am(r) in the same way as Bm

i (r) but

considering now patterns of length m + 1, SampEn is

computed by the following expression:

SampEn(m, r) = − ln

{

Am(r)

Bm(r)

}

(8)

Pincus suggests using the values m = 1 or m = 2 and

taking r between 0.1 y 0.25 times the standard deviation

of the time-series [8]. In our case, we have chosen m equal

to 2 and r equal to 0.2.
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Variable Sig. Type Mean Std.

A1 0.004 N 0.42042 0.06924

T 0.30960 0.11940

A2 0.860 N 0.29860 0.05741

T 0.29245 0.12355

fp1 0.001 N 0.12256 0.02985

T 0.08096 0.03152

fp2 0.009 N 0.21135 0.05547

T 0.14858 0.07109

∆fp 0.003 N 0.22634 0.04560

T 0.15406 0.07444

Ā2 0.523 N 0.37014 0.07962

T 0.39578 0.13407

d1 0.015 N 0.55653 0.07871

T 0.45289 0.13694

d2 0.948 N 0.41963 0.09570

T 0.41651 0.15862

Table 1. Bilateral significance, mean and variance from

the t of Student test applied to the SampEn for the spectro-

gram parameters A1, A2, fp1, fp2, ∆fp, Ā2, d1 and d2 of

type N and T recordings.

Variable Area under ROC curve

A1 79.9%

A2 53.1%

fp1 82.6%

fp2 76.3%

∆fp 77.7%

Ā2 42.0%

d1 76.3%

d2 48.2%

Table 2. Area under ROC curve of SampEn for the spec-

trogram parameters A1, A2, fp1, fp2, ∆fp, Ā2, d1 and d2.

4. Results

Results of the Student’s t test applied to the SampEn

of the numerical series are summarized in table 1. There

we present the mean, variance and bilateral significance

of the SampEn for the sequences of the spectrogram pa-

rameters A1, A2, fp1, fp2, ∆fp, Ā2, d1 and d2. Results

of the test reveal that it is possible to distinguish between

terminating and non-terminating AF in five of the eight pa-

rameters. These five relevant parameters are fp1, fp2, ∆fp,

A1, and d1, which bilateral significances are, respectively,

0.001, 0.009, 0.003, 0.004 and 0.015. The mean SampEn

in N-type signals is higher than in T-type signals for all

these relevant parameters. This is consistent with the fact

that when the episode is near the termination the fibrilla-

tory waves become more organized and, in consequence,

more predictable [15]. In the rest of parameters the bilat-

eral significance obtained is higher than 0.05, thus there

are considered as irrelevant.

The significance of the analyzed parameters can be ob-

served from the point of view of the Receiver Operating

Characteristic (ROC) curves. This is shown in table 2 and

figures 2 and 3, where the non-terminating case, i.e. N-

type, is considered as the positive state. The area under

ROC curves always exceeds the 76% when the relevant

parameters are used. On the contrary, the area under ROC

curves for the non-relevant parameters does not reach 54%
in any case.

In a more detailed analysis, if we attend to the Fig. 2 for

parameter ∆fp we see that it is possible to choose a thresh-

old so that the 87.5% of the N type patients are correctly

classified with a false alarm probability equal to 35.7%.

Concretely, the value of this threshold is 0.18062. In the

same way, we can consider a threshold equal to 0.36744
for parameter A1 so that 87.5% of positive cases are cor-

rectly classified with a false alarm equal to 28.6%. Similar

Figure 2. ROC curve of the SampEn for the spectrogram

significative parameters A1, fp1, fp2, d1 and ∆fp.

Figure 3. ROC curve of the SampEn for the spectrogram

non-significative parameters A2, Ā2 and d2.
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results are obtained for the rest of relevant parameters. On

the other hand, Fig. 3 illustrates that no useful decision

threshold can be chosen for the rest parameters.

5. Discussion

The organization measure of sequences obtained from

spectrogram parameters of AA signals can be used as a

valid method for episode characterization. Five of the eight

analyzed parameters resulted to be clinically relevant in

the decision between T-type and N-type signals. The mean

SampEn of the relevant parameters is higher in terminat-

ing than in non-terminating episodes, what can be seen as

a higher degree of spatial organization of AF. Further re-

search will be centered in refine the method and improve

the results obtained in the present essay.
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