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Abstract 

Tsallis [Physica A, 340 (2004) 1] identified a set of 

numbers “q-triplet” = (q-stat, q-sen, q-rel) suitable for a 

complex system with scale-invariance feature. When q = 

1, the generalized q-Gaussian assumes classical 

Gaussian distribution form. Deviation of the q from unit 

is a measure of the departure from thermodynamics 

equilibrium.  

This work presents q-stat, one of the q-triplet numbers, 

for heart rate variability (HRV) system. The q-stat states 

for the probability distribution of a system in phase 

space. A collection of normal subjects HRV data was 

fitted to generalized q-Gaussian distribution to find out 

which q value correspond to the dynamical system. The 

heart rate signals were obtained from the PhysioBank 

Normal Sinus Rhythm RR Interval Database.  

The results have shown a tending number for generalized 

parametric value for q systematically different from unit 

when distributions were fitted by q-Gaussian.  

Findings from the results suggest that generalized q-

statistics is more suitable for HRV system investigations. 

1. Introduction 

One of the most important contributions of 

information theory introduced by C. E. Shannon in 1948 

[1] was the concept of entropy as information quantity. 

This concept has been successfully used to quantify 

system information since then, in a large range of 

applications.  

Information can be quantified as follows. If X is the set 

of all messages x that X could be, and p(x) = Pr(X = x) is 

the probability of a message x, then the entropy of X is:  
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The entropy formula was conceived by Shannon 

intuitively rather than form basic principles. We can 

conjecture, for instance, that a message with complete 

certainty of occurrence, i.e. probability equals to unit, the 

net entropy is zero. On the other hand, if a message is 

rare, with very small probability of occurrence, the net 

entropy is large instead. The mathematical function that 

has this behavior is logarithmic function.  

The choice of logarithmic base in the entropy formula 

determines the unit of information entropy that is used. 

The most common unit of information is the bit, based on 

the binary logarithm. An interesting and useful property 

of entropy is the fact that, for a closed dynamic system, 

the entropy always grows to a maximum. This can be 

used in an optimization algorithm, for example. 

This formalism has been shown to be restricted to the 

domain of validity of the Boltzmann–Gibbs–Shannon 

(BGS) statistics. These statistics seem to describe nature 

when the effective microscopic interactions and the 

microscopic memory are short ranged. Generally, 

systems that obey BGS statistics are called extensive 

systems. If we consider that a physical system can be 

decomposed into two statistical independent subsystems 

A and B, the probability of the composite system is 

p
A+B=p

A·pB, it has been verified that the Shannon entropy 

has the additivity property: 

S(A+B)=S(A)+S(B) 

However, for a certain class of physical systems, which 

entail long-range interactions, long time memory and 

fractal-type structures, some kind of extension appears to 

become necessary. Inspired by multifractals concepts, 

Tsallis has proposed a generalization of the BGS 

statistics. The Tsallis statistics is currently considered 

useful in describing the thermostatistical properties of 

nonadditive systems, and it is based on a generalized 

entropic form, 
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where k is the total number of possibilities of the 

system and the real number q is an entropic index that 

characterizes the degree of nonadditivity. This expression 
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meets the BGS entropy in the limit qĺ1. The Tsallis 

entropy is nonadditive in such a way that for a statistical 

independent system, the entropy of the system is defined 

by the following pseudo additivity entropic rule 

Sq(A+B) = Sq(A )+ Sq(B) + (1−q)·Sq(A)·Sq(B) 

Considering Sq ≥ 0 in this pseudo-additive formalism, 

three entropic classifications are defined as follows 

• Subadditive entropy (q < 1) Sq(A+B) < Sq(A)+Sq(B)  

• Additive entropy (q = 1) Sq(A+B) = Sq(A)+Sq(B)  

• Superadditive entropy (q > 1) Sq(A+B)>Sq(A)+Sq(B) 

Limit theorems, in particular, the central limit 

theorems (CLT), surely are among the most important 

theorems in probability theory and statistics. They play 

an essential role in various applied sciences as well, 

including statistical mechanics. Historically A. de 

Moivre, P.S. de Laplace, S.D. Poisson and C.F. Gauss 

have first shown that Gaussian is the attractor of 

independent systems with a finite second variance. 

Chebyshev, Markov, Liapounov, Feller, Lindeberg, Levy 

have contributed essentially to the development of the 

central limit theorem.  

Within the nonextensive paradigm the CLT assumes 

another form with a new distribution q-Gaussian [2]. 

2. Methods 

The heart rate variability data were extracted from 

Physionet data bank, normal sinus rhythm. The data 

probability density function was best fitted to a q-

Gaussian with a varying q parameter. The resulting q is 

the q that results to a best linear regression technique, 

according to the equation: 
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Note that this equation allows different q values. 

Therefore one can vary the q parameter and choose the 

best fit.  
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Figure 1: q-Gaussians with q distribution parameter 

varying from 0.1 to 3.1. 

3. Results 

 The results are obtained from the probability density 

from each individual data, consisting on R-R interval 

time series from 48 hours holter exams. All the analysis 

were made on normal sinus rate dataset in Physionet data 

bank. 

Given the dataset studied, the value found for q 

entropic parameter was 1.58 ± 0.76 (mean value ± 

standard deviation) showing a clear tendency apart from 

1. In figure 1 shows several q-Gaussians with entropic 

parameter ranging from 0.1 to 3.1. 

4. Discussion and conclusions 

The results obtained in this work suggest that the 

nonextensive statistical paradigm may supply a good 

methodology for heart rate variability analysis. The 

achieved q parametric value for R-R intervals distribution 

is consistent with the nonextensive paradigm indicating 

the well known strong correlation between the past and 

future events in heart rate variability and the fact that the 

heart rate variability system generates a multifractal 

featured with scale invariance signal. 

The result suggests that nonextensive paradigm is 

adequate to interpret and analyses the heart rate 

dynamics. This finding may encourages further studies 

and analysis methods. 
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