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Abstract 

A study was conducted to evaluate the ability of a 

simple one-dimensional (1D) computational fluid 

dynamics (CFD) model to identify a hemodynamically 

significant renal artery stenosis by predicting pressure 

loss and flow rate across a renal artery stenosis. Six 

combinations of wall properties, inlet, and outlet 

boundary conditions were used to evaluate their effects 

on blood pressure estimation. All combinations of 

boundary conditions in the 1D model produced pressure 

to flow relations that compared favourably with 

previously reported in vitro and three-dimensional CFD 

model of a similar geometry.  The mean error of the 1D 

results, using the in vitro model as the gold standard, 

ranges from 0.53 to 3.46 mmHg. While further work is 

required to optimize the specification of renal outlet 

boundary conditions from patient specific data, these 

results show that a 1D model may be used to identify 

pressure gradients across a renal artery stenoses. 

1. Introduction 

A hemodynamically significant renal artery stenosis 

(RAS) can lead to hypertension, renal failure (ischemic 

nephropathy), refractory angina, and/or recurrent 

episodes of congestive heart failure and flash pulmonary 

edema.  The definitive diagnosis of RAS is somewhat 

controversial in that the presence of anatomic RAS does 

not necessarily imply that hypertension or renal failure 

are caused by the RAS.  Therefore, while non invasive 

imaging studies are used to identify lesions, pressure 

gradients should be obtained to confirm the 

hemodynamic significnce of a given stenosis.   

Hemodynamic significance is generally accepted as a 

peak systolic pressure gradient of more than 10mmHg or 

a mean pressure gradient of more than 5mmHg across a 

stenosis [1]. Pressure gradients are evaluated using 

invasive catheterization, which exposes the patient to 

risk.  In an effort to redice the risk assosciated with 

invasive pressure measurement of RAS, we present a 

method to numerically predict the pressure gradient 

across a stenosis.  This method was originally proposed 

by Yim et al. [2] with the use of three-dimensional (3D) 

CFD method.  Yim used an in vitro model and 

corresponding 3D CFD analysis to measure and predict 

the pressure gradients associated with varying levels of 

flow through a renal artery branch (Fig 1).  We will show 

that the 1D method produces equivalent results and 

highlight the effect of model parameters on the solutions. 

2. Methods 

We have previously developed an integrated system 

for describing and solving flow, pressure, and area 

through a network of distensible tubes [3-5].  Breifly, this 

system solves axisymmetric 1D equations for flow  q, and 

pressure  p: 
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and a constitutive equation relating pressure and area, s: 
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The constitutive equation above is a first order elastic 

function with k1, k2, and k3 fit to experimental data [6]. 

Because the 1D method assumes axial flow dominates, 

it neglects secondary flows.  However, these secondary 

flows lead to significant losses in geometrically complex 

regions including stenosis and junctions.  These losses 

are included in the 1D method via a minor loss 

coefficient, K, that is implemented in the viscous loss 

term in Equation 2 by N = qK 2l .   

The stenosis loss model (Equation 5) used in this 

system was developed by Seeley and Young [7]. Here 

subscript 0 implies terms in the unobstructed, 

downstream region and 1 in the stenosed region.  Re is 

the Reynolds number, Kt is an approximation that 

represents the turbulent effects, and Kv represents the 

viscous effects. This model was developed using both 
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concentric and eccentric geometries.  
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While the flow fields produced by an eccentric and 

concentric stenoses would differ, the overall pressure loss 

is not affected.  In general, stenosis are not considered 

hemodynamically significant until there is a 75% 

reduction in area.  This generalization may vary for a 

given artery based on a number of physiologic factors 

including length, resistance of the distal bed, and 

collateral flow and not on the hemodynamics of the 

geometry in particular. 

The model geometry used in this study was adapted 

from Yim et al.[2] Fig 1.  The diameter of the aorta and 

renal artery are specified as 2.43 cm and 0.57 cm 

respectively.  Observation of the model shows that a 70% 

stenosis was used.  Our model was scaled slightly to 

accommodate renal outlet boundary conditions as 

discussed below.  The relevant renal artery diameters 

used are 0.5 cm with a minimum stenosis of 0.27 cm and 

a length of 0.705 cm.  After the renal artery junction, the 

aorta was tapered to an outlet diameter of 1.0 cm. 

 
Six combinations of boundary conditions were used to 

determine their impact on the predictive ability of the 1D 

model.  The variable boundary conditions are inlet, 

outlet, and wall properties.  Because pressure gradient is 

the only quantity reported, a steady inlet flow is sufficient 

to drive the analysis.  However, the effects of pulsatile 

flow on pressure gradient are of interest.  All studies were 

run with a mean inlet flow of 40 cm3·s-1, with the 

pulsatile studies using the waveform shown in Figure 2.  

As discussed previously, an elastic wall property related 

to vessel radius in Equation 4 is used in the 1D code.  A 

rigid wall approximation was achieved by specifying a 

constant modulus of Eh r0 =1.99⋅107 g·s-2·cm-1, the 

maximum value obtained using Equation 4. 

The renal outlet boundary condition was varied to 

moderate renal artery flow.  Impedance boundary 

conditions based on structured trees [5] and equivalent 

resistance boundary conditions (i.e. zero frequency 

impedance) were used.  Briefly, the structured tree is an 

asymmetric fractal-like tree that is used to compute 

impedance based on linearized, axisymmetric equations 

for 1D flow [6].  The structured tree is adjusted by 

specifying the root radius, r0, (the outlet of the modelled 

region) and a length-to-radius ratio, lrr.  The structured 

tree can be modified using a scaling factor, f, on the 

“resistance” vessels (r < 250µm) to simulate auto-

regulation.  The assignment of outlet boundary conditions 

will ultimately dictate the distribution of flow through a 

network of vessels and care must be taken to specify 

reasonable values.  Representative impedance boundary 

conditions were previously determined based on average 

physiological flow distributions in a healthy adult.  These 

values were used to specify the baseline impedance 

boundary condition as r0 = 0.5 cm, lrr = 80  and f = 1.0  

for the aorta and r0 = 0.25 , lrr = 21  and f = 1.0  for the 

renal artery [5].  In order to determine a range of flow 

and pressure gradients across the RAS, scaling factors 

f = {.6, .7, .8,1,1.1,1.2,1.3,1.5, 2, 2.5}  were used to 

increase or decrease the impedance to flow through the 

renal artery.  

In preliminary studies, analyses were run with and 

without the stenosis loss model.  It was determined that 

even though the 70% stenosis used would not necessarily 

meet the clinical definition of significance, the loss model 

was required to produce results of similar magnitude to 

the in vitro data.  The minor loss model was more 

sensitive to changes in flow rate, with a higher slope 

between predicted pressure gradient and flow, than the in 

vitro model.  In the loss model (Equation 5), the only 

term approximated based on experimental data was the 

turbulence loss coefficient Kt = 1.52 .  We “tuned” the 

stenosis loss model by setting Kt = 1.20  to reduce the 

slope between pressure gradient and flow.  This tuning is 

only appropriate for cases where training data is 

available. 

3. Results 

Studies were performed to evaluate the ability of the 

1D model to predict flow and pressure drops across a 

RAS.  Studies were performed using steady or a pulsatile 

inlet (aortic) flow waveform in both rigid and deformable 

tubes.  At the renal outlet, impedance or the equivalent 

resistance boundary condition was used.  At the aortic 
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outlet, a consistent impedance boundary condition was 

used for all models.  An overview of the effects of the 

different models and boundary conditions are shown in 

Figure 2.  

The renal outlet boundary condition was adjusted to 

vary the flow through the renal artery.  At a baseline level 

of impedance with scaling factor f = 1.0 , mean flow 

through the renal artery is between 10-13 cm3·s-1, with 

pressure gradient ranging from 14-20 mmHg (Figure 3).  

By reducing the renal impedance, additional flow was 

drawn through the renal artery with an accompanying 

increase in pressure gradient across the stenosis.  

Increasing the renal impedance reduced the flow and 

pressure gradient across the stenosis. To compare the 

results with those published by Yim et al., the mean 

pressure gradient (renal pressure minus aortic pressure) 

and flow were computed for each model and scaling 

factor.  The results of these studies along with the results 

of Yim’s in vitro study and 3D CFD analysis are shown 

in Figure 3. 

 
For the purposes of this study, the values measured 

from the in vitro model are considered the “gold 

standard”. Aortic pressures were not reported, therefore 

only mean gradient values can be compared.   

4. Discussion and conclusions 

To validate the utility of the 1D analysis method in 

predicting pressure gradients, a comparison was made 

against in vitro and CFD data reported by Yim et al.  Yim 

was able to show agreement between the in vitro and 

CFD results (error 5.5mmHg).  We repeated the 

computational study using our 1D analysis method.  The 

1D model produced differential pressure vs. flow values 

similar to those measured in vitro through a RAS (Figure 

3). 

The 1D analyses examined a variety of boundary 

condition combinations.  Overall, the 1D results were 

exceptionally close to the reported in vitro results.   At 

higher flow rates, computed gradients were overestimated 

by most of the computational methods.  There was little 

difference between the deformable models regardless of 

inlet or renal boundary conditions.  The mean error 

between the deformable models and the in vitro model in 

the region of relevant pressures is ~0.99 mmHg with the 

greatest error occurring above a gradient of 12 mmHg.  

The deformable models exhibit a greater increase in 

differential pressure with flow than the rigid models.  

This is most likely because the variable elasticity allows 

distension of the aorta without allowing distension of the 

RAS, despite the fact that the absolute pressures decrease 

as pressure gradient increased.  Similarities were also 

seen between two of the rigid models: steady flow with 

resistance and pulsatile flow with impedance boundary 

conditions.  This rigid pair produced results closest the in 

vitro model over a large range of pressure gradients with 

a mean error of ~0.5mmHg. This agreement is expected 

since these boundary conditions are most similar to the 

experimental setup.  Finally, the rigid walled model with 

pulsatile flow and resistance boundary conditions exhibits 

a mean error of 3.46 mmHg and exhibited a trend closest 

to the reported 3D CFD values over a large range of 

pressures.  

In this study, we find that the 1D analysis method 

using the stenosis loss model is very good at predicting 

pressure gradients when compared with in vitro 

experimental data.  What remains to be determined is if 

this method can provide meaningful data to clinicians in 

predicting the benefits or outcome in treating RAS.  The 

most meaningful data is likely to be the predicted 

waveform distal to the stenosed segment, the RPP.  In 

order to predict an accurate RPP, more attention must be 

paid in modelling the outlet boundary condition for the 

renal artery and in realistic representation of vessel wall 

properties including both diseased and healthy tissues.  

While all 1D models produced reasonable pressure 

gradients, Figure 4 shows that the three boundary 

condition cases most likely to predict accurate waveforms 

are the rigid model with impedance boundary conditions 

or the deformable models with resistance or impedance 

boundary conditions.  In an in vivo setting, an impedance 

boundary condition would produce the most realistic 

results.  The future direction for this work is to determine 

a mapping between patient specific renal parameters for 

use in determining impedance boundary condition 

parameters.   Data regarding renal function will also be 

used to determine the dynamic regulation limits of the 

kidney.  This ability to determine kidney function may 

allow for prediction of patient outcomes following 

revascularization.  
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In addition to optimizing the renal artery boundary 

conditions, future work must address the feedback 

mechanisms regarding systemic boundary conditions.  In 

order to report a meaningful pressure gradient as a 

percentage of aortic pressure, the computed aortic 

pressure must be correct.  In this study, the outlet 

boundary condition for the aorta was not modified.  

While the baseline aortic pressures for outlet impedance 

boundary conditions with a scaling factor f = 1  were 

approximately 100 mmHg, the system was not tuned to 

achieve physiologic pressures for scaled renal outlets.  As 

a result, the predicted systemic pressures were widely 

varied with increased pressures for renal scaling factors 

f < 1  and lowered pressures for scaling factors f > 1 .  

The scaling factors were selected to vary the flow 

through the renal artery and were not based on 

physiologic values.  Therefore, it is clear that a better 

understanding of the limits of normal renal regulation and 

of the effects of renal flow and pressure on systemic 

regulation is needed to create an accurate computational 

model of blood flow and pressure through RAS. 

We show that the 1D analysis method can predict a 

pressure gradient across a RAS with accuracy 

comparable to a 3D CFD model.  The strength of a 1D 

method is the speed in which it can evaluate the pressure 

and flow distribution over a large region of interest.  The 

limitation of a 1D method is that it cannot provide 

detailed flow field information.  Therefore, the 1D 

method is viewed as a companion to 3D methods in 

assessing blood flow.  The challenge for any analyst is to 

describe the region of interest with as much detail as 

needed to achieve a meaningful result.  Imaging 

techniques are capable of providing geometry, and in 

some cases, flow of large vessels for model input.  

However, in order to accurately model the flow in both 

large and small vessels, more sophisticated boundary 

conditions are required.here 
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