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Abstract

In this work, the analysis of atrial signals recorded dur-

ing atrial fibrillation was pursued using two spectral esti-

mators designed for series with missing data: the Lomb pe-

riodogram (LP) and the Iterative Singular Spectrum Anal-

ysis (ISSA). The main aim is to verify if subtraction of the

ventricular activity might be avoided by performing spec-

tral analysis on those ECG intervals where such activity

is absent, (i.e. the T-Q intervals), at least to estimate the

dominant atrial Fibrillatory Frequency (FF).

Recordings coming from the 2004 Computers in Car-

diology Termination Challenge Database were analyzed.

Fibrillatory frequencies were then compared with those

obtained from the analysis of the correspondent atrial sig-

nals extracted using a modified Average Beat Substrac-

tion (ABS) technique. We observed that the mean absolute

difference was 0.42 ± 0.66 Hz for LP, (mean±SD), and

0.39 ± 0.64 Hz for ISSA. We concluded that estimation of

FF is feasible without applying QRS-T subtraction.

1. Introduction

Analysis of fibrillatory waves extracted from the surface

ECG on subjects undergoing atrial fibrillation (AF) have

been documented to provide significant information on the

properties of AF events [1]. In particular, the dominant

fibrillatory frequency (FF), or the related “dominant atrial

cycle length” (DACL), are features of clinical relevance

to assess drugs treatment and to predict the outcome of

cardioversion [2] or ablation therapy [3].

Quantification of the dominant FF is obtained through

spectral analysis of Atrial Signal (AS), which is usually

extracted from surface ECG by removing waves induced

by ventricular activities. The derivation of AS requires

advanced signal processing techniques, since atrial and

ventricular activities, during AF, overlap in time and fre-

quency. These techniques include averaged beat subtrac-

tion (ABS) [4], spatio-temporal QRS-T cancellation [5] or

methods based on independent (ICA) or principal (PCA)

component analysis [6, 7].

Once obtained the atrial signal, the detection of the dom-

inant FF is often the main (and only) goal. Thus, one might

wonder if subtraction of the ventricular activity might be

avoided by performing spectral analysis on those ECG in-

tervals where ventricular activity is absent, (i.e. the T-Q

intervals). The idea was originally explored by Rosen-

baum & Cohen [8] who averaged periodograms computed

on all the several T-Q intervals at disposal. The technique,

while limited in the scopes, does not need several concur-

rent leads, as it might be the case in Holter recordings.

Limitations are the low spectral resolution, and the prob-

lem of vanishing T-Q intervals at high heart rates.

In order to overcome these limitations, we observed

that the successions of T-Q intervals, obtained by remov-

ing the ECG portions affected by QRS-T waves, can be

treated as a time-discontinuous (or unevenly sampled) sig-

nal. Looked from this perspective, the question might be

recast into a problem of missing data in a long time series

and proper methods might be applied. In particular, two

techniques were explored in this work: i) the Lomb peri-

odogram (LP) [9] and ii) the Iterative Singular Spectrum

Analysis (ISSA) [10]. The objective of the work is to ex-

plore the capability of these methods in detecting the domi-

nant FF from single-lead analysis of surface ECG recorded

during AF.

2. Methods

2.1. Iterative SSA method

Singular spectrum analysis (SSA) is a technique used

for state space reconstruction of nonlinear dynamical sys-

tems. It was also used for detecting oscillations of physical

significance in a time series [11, 12]. The original time se-

ries x(tn) (n = 1, 2, . . . , N , being ∆tn = tn+1 − tn =
constant) is initially embedded in a space of large dimen-

sion M , where the embedding dimension M determines

the longest periodicity captured. The M -lag correlation

matrix Cx is computed in the vector space of delay coor-
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Figure 1. Spectra of the atrial fibrillation signal as ob-

tained with the three methods employed in the work: it-

erative SSA (dash-dotted line), Lomb periodogram (thick

line) and the modified ABS method as a reference (thin

continuous line). Data refers to record n02, first channel.

dinates as

Cx(i, j) =
1

N − |i − j|

N−|i−j|∑

n=1

x(tn)x(tn+|i−j|) (1)

with 0 ≤ |i − j| < M . Cx is a M × M Toeplitz matrix

with constant diagonals. Then, principal component analy-

sis (PCA) is carried on Cx computing its eigenvectors, El,

also known as empirical-orthogonal functions (EOF), and

eigenvalues λl. Projecting the time-series onto each EOF

produces l ≤ M principal components

Al(tn) =

M∑

j=1

x(tn+j)El(j) (2)

where 0 ≤ n ≤ N −M . Principal components are shorter

(N −M + 1) and filtered version of the time series x(tn).
The original time series can be expanded in an optimal

way [12] as the sum of its M reconstructed components:

x(tn) =
Λ∑

l=1

Rl(tn) (3)

where

Rl(tn) =

M∑

j=1

Al(tn−j)El(j)

M
(4)

is valid for M ≤ n ≤ N − M + 1. (Reconstruction for-

mula for the remaining points can be found in [12]). The

eigenvectors corresponding to relatively small eigenvalues

λl have little contribution on x(tn) and are likely to be gen-

erated by noise. Therefore, once sorted the eigenvalues in

decreasing order, signal and noise are typically separated

by inspecting the diagram of λl vs l and the reconstruction

of x(tn) is performed with only m reconstructed compo-

nents (and thus principal components).

Schoellhamer [13] suggested a modified version of the

SSA algorithm to compute spectral estimates of time se-

ries with missing data. The main idea is that one can still

compute (1) by ignoring any pairs of data points where a

value is missing:

C̃x(i, j) =
1

Kl

∑

Kl

x̃(tk)x̃(tk+|i−j|) (5)

where the summation is now extended to the Kl available

pairs only, being Kl ≤ N − |i − j| and M determines

the width of the gaps to be filled. In (5) tk ⊂ tn and

∆tk = tk+1 − tk 6= constant. A few leading reconstructed

components are then obtained with a singular value de-

composition of the matrix C̃x and used to build a filtered

version of the time series x̃(t). Finally the gaps of x(tn)
are filled with the corresponding samples of x̃(t).

The method can be applied in an iterative way [10].

Firstly a subset of the available data (called test set) is

removed from the series. The leading empirical orthog-

onal function E1 is selected and the corresponding recon-

structed component R1 is used to fill the gaps in the orig-

inal time series. The empirical orthogonal function E1 is

recomputed and the procedure is iterated (inner loop) un-

til a convergence criterium is met. At this point a second

EOF is added for reconstruction, starting from the series

with data filled in by R1, and the inner loop is again re-

peated until convergence. The process is stopped when

adding new EOF does not improve significantly the recon-

struction of the test set. At the end, the test set data are

plugged back in and the inner loop repeated again until

convergence. Summarizing, the inner loop is used to refine

the reconstruction with a fixed number of reconstructed

components. The outer loop instead is meant to increase

the number of such components, if necessary.

2.2. Lomb periodogram

A classical method of spectral analysis for unevenly

sampled data is the Lomb-Scargle periodogram (LP) [9].

A slightly modified version of the periodogram was given

in [14] by:

P (ω) =
1

2σ2





[∑K

k=1
[x̃(tk) − x̄] cos ω(tk − τ)

]2

∑K

k=1
cos2 ω(tk − τ)

+

[∑K

k=1
[x̃(tk) − x̄] sinω(tk − τ)

]2

∑K

k=1
sin2 ω(tk − τ)





(6)
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where ω = 2πf , x̄ and σ2 are respectively the mean and

variance of the series x̃(tk). τ , defined as

tan(2ωτ) =

∑K

k=1
sin(2ωtk)

∑K

k=1
cos(2ωtk)

, (7)

is an offset which makes P (f) independent of time-shifts.

The Lomb periodogram analyzes periodic signals weight-

ing data on available points, rather then on fixed time in-

tervals (such as the DFT method does).

Direct implementation of equation (6) leads to compu-

tationally intensive algorithms, which might become un-

feasible when a large number of frequencies need to be

explored. While fast approximate algorithms are available

[15], in the following we rather preferred to simply eval-

uate equation (6) on a small number of evenly spaced fre-

quencies (∆f = 0.1 Hz) in the range [3, 12] Hz, where the

dominant FF is supposed to be located.

2.3. AF database

To test the methods on real ECG recordings, we consid-

ered the data coming from the 2004 Computers in Car-

diology AF Termination Challenge Database [16]. The

Database includes 80 records extracted from long-term

ECG Holter of patients undergoing AF episodes. Each

recording is 1-minute long, sampled at 128 Hz and two

simultaneous ECG leads are available.

3. Results

3.1. Reference FF computation

To assess the actual performances of the methods un-

der analysis on real ECG data, a reference value for the

fibrillation frequencies was needed. To this extent, a mod-

ified ABS method was employed. Details on the algorithm

can be found in a previous paper [17]: briefly, it uses two

separate templates for QRS and T waves to compensate

for QT variability. The spectral power density was com-

puted with the Welch’s periodogram (windows length of

1280 points with 1120 samples overlap; spectral resolution

0.1 Hz) and the dominant oscillation was located by direct

search in the range [3 12] Hz. For each record, FF was es-

timated independently for each channel. To ensure that the

dominant oscillation was correctly estimated (e.g. avoid

mild dominant peaks in a relatively broad-band spectrum),

those records for which the spectral concentration of the

peak was lower than 0.12 were excluded (15 traces). Also,

cases in which the heart rate was higher than 140 bpm were

set apart as these would have been worst case scenario sit-

uations for the LP and ISSA methods (7 subjects).
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Figure 2. Box plot of the absolute differences between FF

estimated obtained with ISSA or LP and the reference ABS

method (See section 3.1 for details). Lines at the lower

quartile, median, and upper quartile values were plotted.

Possible outliers are marked with crosses.

3.2. Lomb and ISSA spectral estimate

ECG segments containing QRS-T waves were elimi-

nated with a simple rule. We fixed QTc = 550 ms and es-

timated each QT interval with the inverse Bazett formula:

QT = QTcRR2. Then, starting from the Q onset, all the

points contained in the QT segment were removed from

the series. Ventricular beats and artifact were excluded

completely (i.e. all the points up to the next beat were

eliminated).

Spectral estimates were obtained for the 131 recordings

with the Lomb and ISSA method. The variance of the

Lomb estimates was decreased with an approach similar

to the one used for the Welch’s periodogram. x̃(tk) was

split into portions of 1280 points each with a 1120 sam-

ples overlap. Figure 1 compares the fibrillatory spectra ob-

tained with the three methods.

3.3. Performances

Figure 2 summarizes the results obtained. The abso-

lute differences between the estimated FFs and the refer-

ence values computed with the ABS method are shown. In

general, the dominant oscillation was detected by all the

methods and there was an overall good agreement: the dis-

crepancy with the reference ABS method was ≤ 0.5 Hz

for most cases (101/131 recordings for ISSA and 99/131
for LP). Only in a few situations the observed absolute

difference was higher than 1 Hz (17/131 cases for ISSA

and 22/131 cases for LP). The agreement between ISSA

and ABS method is slightly superior than the one between

LP and ABS. Overall, the mean absolute difference was
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0.39±0.64 Hz, (mean±SD), for ISSA and 0.42±0.66 Hz

for LP.

4. Discussion and conclusions

In this work we tested two methods devised for comput-

ing spectral estimates from series with missing data. The

analysis was performed with ECG signals recorded during

atrial fibrillation. The main focus was on the quantification

of the dominant fibrillation frequency, a key characteristic

of the AS, widely used for clinical evaluation of AF events.

The results showed that both algorithms were able to

provide reliable estimates of the FF with a level of agree-

ment consistent with similar comparative works, where

techniques for separating the atrial signal from ventricular

waves were considered (e.g. see figure 3 in [18]).

The ability to manage missing data proved a practi-

cal advantage with AS: the development of accurate al-

gorithms for the cancelation of the ventricular waveforms

might be avoided as long as ECG segments including those

activities are discharged.

Surely more work is needed though (for example to in-

clude the cases with heart rate > 140 bpm). But several as-

pects render these results promising: i) the algorithms are

simpler and their implementations straightforward; ii) es-

timation of the dominant FF can be performed on a single-

lead basis (which is a plus in long-term monitoring when

only a few leads are usually recorded); iii) the ECG signals

we considered were sampled at a low frequency and were

not free of ectopic ventricular beats as in related compara-

tive works [18].
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