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Abstract

Most simulations of cardiac electrophysiology use the

steady state as initial condition. Spatial variations in

steady-state membrane potential may arise due to is-

chemia, coupling with fibroblasts, or local changes in in-

trinsic resting potential. In large scale models, simulating

free evolution until the steady-state is reached may be com-

putationally expensive when long time constants or slow

concentration drifts are involved in the cell models.

This paper describes a dedicated Newton-based root-

finding solver to determine the steady state of a tissue in

which two or more cell types coexist in the monodomain

framework. This approach was applied to a 2D mi-

crostructural tissue model in which myocytes were coupled

to fibroblasts, leading to an inhomogeneous elevation of

the myocyte resting potential.

1. Introduction

Models of cardiac electrophysiology models simulating

the propagation of the electrical impulse use in most cases

the steady state as initial condition. In a tissue with a sin-

gle cell type and uniform membrane properties, the resting

state is necessarily uniform. As a result, it can be computed

in a single cell model by letting this cell evolve from an ar-

bitrary initial state until the steady state is reached. Even

in this simple case, slow transient drifts in ionic concen-

trations make it difficult to establish that the steady state is

indeed reached [1].

But the steady state is not always uniform. Spatial vari-

ations in steady-state membrane potential may arise due

to ischemia, coupling with fibroblasts, or local changes in

intrinsic resting potential. Since the sodium channels are

very sensitive to the changes in resting potential, such vari-

ations can result in significant changes in excitability and

conduction velocity. In large scale models, simulating free

evolution until the steady-state is reached may be com-

putationally expensive when long time constants or slow

concentration drifts are involved in the cell models. For

instance, the MacCannell et al. fibroblast model [2] has

an intrinsic resting potential of −49.4 mV and one of its

gating variables has a relaxation time in the range 1500 to

5300 ms. If such fibroblast was coupled to myocyte, com-

puting the steady state would require to simulate at least 5

to 10 s.

In a previous work, a combination of analytical and nu-

merical tools was used to identify the steady states in de-

tailed atrial cell models [3]. This paper extends this ap-

proach to multi-cellular structures incorporating multiple

cell types. The practical use of the resulting algorithm is

illustrated through a one-dimensional model and a two-

dimensional microstructural tissue model, both incorpo-

rating myocytes and fibroblasts coupled through gap junc-

tions.

2. Methods

2.1. Problem statement

In the framework of the monodomain approximation,

the system of equations describing electrical propagation

in a cardiac tissue reads [4]:

βCm

∂Vm

∂t
= ∇ · σ∇Vm − βIion(Vm,q,x) (1)

dq

dt
= F(Vm,q,x) , (2)

where Vm is the membrane potential field, β is the surface-

to-volume ratio, Cm is the membrane capacitance per unit

area, σ is the effective conductivity, Iion is the ionic current

across the membrane, q describes the internal state of the

membrane (e.g. the channel gates), and F is associated

with a membrane kinetics model. The explicit dependency

in x of Iion and F indicates that the model parameters or

even the formulation of the membrane kinetics may vary

ISSN 0276−6574 113 Computers in Cardiology 2007;34:113−116.



with space. This enables the introduction of multiple cell

types.

The objective is to find the steady-state solution(s) of

this system, that is, to find fields Vm and q satisfying

∇ · σ∇Vm = βIion(Vm,q,x) (3)

F(Vm,q,x) = 0 . (4)

Suppose that there exists a function G(Vm,x), smooth

in Vm, such that

F(Vm,G(Vm,x),x) = 0 . (5)

Then, Eq. (4) can be substituted into Eq. (3), leading to the

equation

∇ · σ∇Vm = βI(Vm,x) , (6)

where I is defined by

I(Vm,x) = Iion(Vm,G(Vm,x),x) . (7)

The advantage is that the non-linear equation (6) to be

solved involves only the field Vm. Subsection 2.2 will

show how to compute the function G and subsection 2.3

will describe how Eq. (6) can be solved.

2.2. Steady-state ionic current

For most of the membrane kinetics models, the function

G is well-defined and can be computed efficiently. For the

sake of illustration, the case of the Luo–Rudy model [5]

will be considered here. The details for more sophisticated

models such as the Courtemanche et al. and the Nygren et

al. atrial cell models can be found in [3].

In the Luo–Rudy model, q = (m,h, j, d, f, x1, [Ca2+]i),
where the first 6 variables (gating variables) are governed

by an equation of the form

dy

dt
=

y∞(Vm) − y

τy(Vm)
(8)

with y = m,h, j, d, f or x1. The evolution of the intracel-

lular calcium concentration [Ca2+]i is described by

d[Ca2+]i
dt

= −γIsi +
[Ca2+]0 − [Ca2+]i

τ
(9)

Isi = gsi d f (Vm − Esi) (10)

Esi = a − b log [Ca2+]i , (11)

where γ, [Ca2+]0, τ , gsi, a and b are constant. For each

gating variable y at steady state, y = y∞(Vm). In partic-

ular, d and f can be replaced by d∞ and f∞ in Eq. (10).

In order to determine completely the function G, we still

have to solve Eq. (9) for [Ca2+]i at clamped Vm when the

time derivative vanishes. Algebraic manipulations lead to

the formula:

[Ca2+]i = W (c1 exp c2)/c1 , (12)

where W is the Lambert W-function [6] and

c1 = (gsid∞f∞τγb)−1 (13)

c2 = c1[Ca2+]0 − (Vm − a)/b . (14)

Therefore, the function G associated with the Luo–Rudy

model (LR1) can be worked out analytically and is writ-

ten as

GLR1(Vm) =
(

m∞, h∞, j∞, d∞,

f∞, x1∞, W (c1 exp c2)/c1

)

. (15)

For each node i whose membrane kinetics is de-

scribed by the LR1 model, we set I(Vm,xi) =
Iion,LR1(Vm,GLR1(Vm)), and so on for the other mem-

brane kinetics models.

2.3. Non-linear system solver

Equation (6) will be assumed to be discretized in the fol-

lowing form using for instance the finite volume method:

−M · V = A · I(V) , (16)

where V is the membrane potential field (vector in mV),

M is the diffusion matrix (stiffness matrix in mS, which

is assumed to be symmetric non-negative definite), A is

the diagonal matrix representing the area of membrane in

each element (mass matrix in cm2), and I is the steady-

state ionic current (vector in µA/cm2) defined by Eq. (7).

Equation (16) can be solved iteratively using the New-

ton’s method. The initial condition V0 is given by the cells

being in their resting state as if they were uncoupled. Then,

at step n+1, the update is obtained by solving the system:

Jn · (Vn+1 − Vn) = −M · Vn − A · I(Vn) , (17)

where the Jacobian matrix is given by

Jn = M + A · I′(Vn) . (18)

The i-th component of the vector I′ contains the membrane

dynamic conductance ∂I(Vm,xi)/∂Vm computed at posi-

tion xi. When a relatively small number of different cell

types or membrane parameter sets are present in the tis-

sue, the functions I(Vm) and ∂I(Vm)/∂Vm can be pre-

computed and tabulated for each cell type in order to in-

crease computational efficiency. The iterations are stopped

when ‖Vn+1−Vn‖∞ < ǫ, where typically ǫ = 10−6 mV.

In the special case where the membrane response is lin-

ear, i.e. when I(V) = Gm(V−V0) with Gm being a di-

agonal matrix, the first Newton iteration V1 already gives

the exact solution of Eq. (16):

V1 = (M + AGm)−1AGmV0 . (19)
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In general, in the vicinity of the resting potential,

∂I/∂Vm, which represents the membrane conductance, is

positive. In this case, Jn is symmetric positive definite and

Eq. (17) is guaranteed to have a unique solution. The linear

system (17) was solved using a conjugate gradient method

with an incomplete Cholesky preconditioner [7].

2.4. Validation

In order to illustrate the efficiency of the method as well

as its accuracy, the steady-state membrane potential profile

was computed in two test cases.

The first test case was a cable (discretization: 100 µm;

see Fig. 1A) comprising 100 myocytes (Courtemanche et

al. model) and 10 fibroblasts (MacCannell et al. model) in

a configuration similar to that in [8]. The coupling conduc-

tance was set to 1 µS, except at the junction between the

myocytes and fibroblasts, where the coupling was 0.1 µS.

The second test case was a two-dimensional microstruc-

ture model similar to that proposed by Spach et al. [9]. The

tissue model, 1.73 by 1.73 mm in size with a discretization

of 8 µm, contained 864 randomly-shaped myocytes [10].

The tissue architecture is shown in Fig. 2A. To approxi-

mate the gap junction distribution experimentally observed

in adult cardiac tissues, 70% of the lateral connections

were randomly removed [10]. The conductance of the re-

maining connections was set to 0.2 µS. The resistivity of

the intracellular medium was set to 150 Ω cm. Clusters

of fibroblasts covering about 11% of the tissue were in-

troduced (Fig. 2A). Each 8 by 8 µm element in these re-

gions was assumed to be a fibroblast with a capacitance

of 6.3 pF. The conductance of both the fibroblast-myocyte

and the fibroblast-fibroblast connections were set to 3 pS.

The membrane kinetics used was the Ramirez et al. model

for the myocytes [11] and the MacCannell et al. model for

the fibroblasts [2].

3. Results

Figure 1A shows the steady-state membrane potential

profile for the first test case. This profile is in agree-

ment with that obtained in [8] by simulating a free evo-

lution until the steady-state was reached. However, be-

cause of the slow time constants involved both in the fi-

broblast model and in the myocyte model, as well as the

small fibroblast-myocyte coupling conductance, this tech-

nique requires simulating the system for a very long time.

Figure 1B compares these methods. While a few iterations

were sufficient to reach the steady state with the method

presented in this paper, the convergence was much slower

when simulating free evolution. In the latter case, an accu-

racy of 0.2 mV was reach after 100 ms of simulated time,

but 60 s of simulated time was necessary to obtain and

accuracy of 10−3 mV. Note that the two methods agree
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Figure 1. (A) Steady-state membrane potential profile the

first test case (cable). (B) Solid line: membrane potential

of myocyte #100 during free evolution starting from its in-

trinsic resting potential. Stars: successive iterations using

the method of this paper (iteration number above the sym-

bol). At iteration 1, the potential is −72.9 mV (not shown).

within 5 · 10−4 mV.

The steady-state membrane potential map for the sec-

ond test case is displayed in Fig. 2B. As a result of the

coupling with fibroblasts, the myocyte membrane poten-

tial was non-uniformly depolarized by 3.9 mV up to more

than 6 mV close to large clusters of fibroblasts (the in-

trinsic resting resting potential of the Ramirez model is

−83.7 mV). Convergence was reached after 36 iterations.

The accuracy of the solution was determined by simulat-

ing a free evolution starting from the steady state com-

puted using the non-linear solver. The maximum varia-

tion in membrane potential during 200 ms simulation was

0.42±0.03 µV (max: 0.62 µV). The accuracy of the conju-

gated gradient solver was found to be more critical for the

non-linear solver than for the semi-implicit monodomain

simulation. Thus, a smaller relative tolerance was used

(10−8 instead of 10−6). In any case, the root finding pro-

cedure was less demanding in terms of CPU time than sim-

ulating the system for 10 ms using a semi-implicit scheme.

These 10 ms of simulation would be clearly insufficient

reach the steady state (see Fig. 1B).
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Figure 2. (A) Microstructural model, 1.73 by 1.73 mm in size, highlighting cell boundaries. Shaded regions represent

clusters of fibroblasts. (B) Steady-state myocyte membrane potential map. Isopotential lines are drawn every 0.25 mV.

4. Discussion and conclusions

Computing of the steady state through root-finding was

found to be convenient and computationally efficient when

applied to heterogeneous tissue incorporating multiple

membrane kinetics models. Generalization to other ge-

ometries and to three dimensions is straightforward. An-

other key advantage is that the convergence properties only

depends of I(Vm) and not on the kinetics of the internal

variables q. If I(Vm) is nearly linear close to its rest-

ing state (which is the case in most membrane models),

an accurate estimate is obtained after a few iterations only.

However, the algorithm and its efficiency rely on the ability

to accurately compute the function G(Vm) for each of the

membrane models involved, which requires some prelim-

inary (handwritten or with the help of a computer algebra

system) mathematical computations [3].
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