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Abstract

Ultrasound transmission tomography is a potentially
promising alternative to standard X-Ray imaging in medi-
cal diagnosis, especially in mammography. The reconstruc-
tion of the local attenuation coefficient from the measured
signals can be formulated as a large overdetermined system
of linear equations based on a simplified ultrasound trans-
mission model. It can be solved by means of the Kaczmarz
algebraic reconstruction technique. The algorithm succes-
sively iterates through the equations and computes the cor-
rections of the initial solution estimates. Because the orig-
inal version of the algorithm does not guarantee conver-
gence to the optimum, an extended version of the method
is used here. It has been shown previously to converge to
the least-mean-squares optimum. Both the original and ex-
tended algorithms are strictly sequential since the compu-
tation in the particular iteration depends on the correc-
tions from the previous step. To enable parallelization of the
method, thus speeding up the computation, a partitioning
scheme is proposed and analyzed. The sequential as well as
the partitioning-scheme algorithms are tested on both syn-
thetic and real radiofrequency data (acquired using an ex-
perimental tomograph).

1. Introduction

Ultrasound transmission tomography is a poten-
tially promising alternative to standard X-Ray imag-
ing in medical diagnosis, especially in mammography.
This is mainly due to the non-ionizing character of ul-
trasound and high information content of the measured
signals that could potentially result in high-resolution imag-
ing.

The measurement setup is similar to the MRI and X-Ray
computed tomography setup [1]. The imaged object (e.g.
human breast), immersed in a water tank, is surrounded
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by transducers emitting and receiving ultrasound field from
various directions.

Compared to MRI and X-Ray computed tomography, the
ultrasound field and the image reconstruction algorithms are
rather complex and computationally demanding. This is be-
cause the wavelength of ultrasound and the size of the im-
aged structures are comparable which causes diffraction and
refraction. As a result, ultrasound transmission tomography
is in the research state, so far still not applicable in practice.
More robust image restoration methods and application of
more accurate mathematical models of the ultrasound field
are needed.

Here, the ultrasound transmission tomography setup is
considered with the aim to image a map of ultrasound at-
tenuation coefficient of the immersed object. This tissue pa-
rameter is closely related to the tissue type and its patholog-
ical state and, thus, is of high diagnostic value [2].

In the published methods [3, 4, 5], the principle is di-
rectly derived from computed tomography. The emitted ul-
trasound pulse is supposed to propagate along a narrow
straight line. Attenuation along the beams are estimated and
are arranged to projections. The problem of attenuation-
coefficient image reconstruction is then formulated as the
inverse Radon transform [1]. It is solved by means of fil-
tered backprojection. The major artifacts of these methods
are caused by refraction, phase cancellation (due to dis-
torted phasefront of the received pulse or the non-normal
incidence), varying sound speed and pulse detection prob-
lems.

An alternative to the filtered backprojection are the so
called algebraic reconstruction techniques (ART) [1]. The
problem of inverse Radon transform is formulated as the so-
lution of an overdetermined set of linear equations. This ap-
proach is more general because is can also be used for non-
straight beams (e.g. reflected and scattered beams), which
is potentially a valuable additional source of useful infor-
mation [6]. Furthermore, due to the iterative character of
the ART approach, additional regularization can be applied.
Thus, the ART reconstruction is the method of preference
here.

Kaczmarz method of projections [1] is a well accepted
ART method. It gives satisfactory results for problems with
square matrices, whereas the results for the overdetermined



systems are not optimal. Therefore, an extended Kaczmarz
method has been proposed [7]. It converges to the optimal
solution of the overdetermined system of linear equations.

One of the original contributions of the paper is the appli-
cation of ART methods in ultrasound transmission tomogra-
phy. The basic and extended Kaczmarz methods are applied
and analyzed. As the processed equation sets are fairly large
(for the current experimental ultrasound tomograph about
130000 equations with 2000 unknowns, in future setups in
3D potentially millions of equations have to be solved), the
solving is very computationally demanding. To enable par-
allelization of the method, thus speeding up the computa-
tion, a partitioning scheme is proposed and analyzed.

The sequential as well as the partitioning-scheme algo-
rithms are tested on both synthetic and real radiofrequency
data acquired using an experimental tomograph.

2. Formulation of the Image Reconstruction
Problem

The present ultrasound attenuation tomography ap-
proach is derived for a setup, where the imaged object,
immersed in a water tank, is enclosed by a ring of transduc-
ers (Fig. 1). One transducer is in the emitting mode, while
all other transducers record the received radiofrequency sig-
nals. Then, the next element is selected as emitting and
all remaining transducers are recording, and so on un-
til all transducers have been used as emitters.

The emitted pulse is an undirected beam in the tomo-
graphic plane. Thus, the pulse spreads as a spherical wave in
this plane. In the direction normal to the tomographic plane
the pulse is supposed to be narrow. Such transmitted fields
can be approximately achieved by a transducer with a small
cross-section in the tomographic plane and focused to this
plane. The recorded radiofrequency signals are long enough
to contain the directly transmitted signal and also the signal
reflected and scattered from the imaged structures in the to-
mographic plane.

In this study, only the first pulse s(t) of the radiofre-
quency signal r f (t) is used in the computation (see Fig. 1).
It corresponding to the directly transmitted wave.

Taking any combination of the sending and receiving el-
ements, the amplitude spectrum of the first pulse signal is

|S(ω)|= |S0(ω)| · e−βd| ω

2π
|, (1)

where ω is frequency, d is the distance between the send-
ing and receiving element and S0(ω) is the spectrum of a
pulse recorded with no object between the sending and re-
ceiving transducers (only water in the measurement tank).
It describes the electrical signal applied to the input of the
sending transducer and the electroacoustical transfer func-
tions of the transducers. β is the mean attenuation coeffi-

Figure 1.

cient of the tissues along the direct propagation path l be-
tween the transducers.

Having a discretized attenuation-coefficient map in the
tomographic plane, the mean attenuation coefficient β can
be expressed by the local attenuation coefficients of each
pixel βi lying on the direct propagation path l:

βd = ∑
i∈l

βidi, (2)

where di is the length of the i-th pixel along the path l. An
overdetermined set of linear equations can be formulated
based on Eq. 2 as

A ·x = b. (3)

Each equation corresponds to one combination of the send-
ing and receiving transducers. The column vector of un-
knowns x consists of the local attenuation coefficients βm of
all pixels located inside the ring of transducers. The matrix
A consists of the pixel lengths dm,n along the correspond-
ing propagation paths (nonzero for pixels on the path). The
right-side column vector b consists of the attenuation terms
βd for each propagation path. It can be estimated by sev-
eral methods [3]. Here, the power-ratio method is used be-
cause it gave the most reliable results in our setup. It can be
computed from the discretized spectra S(k) and S0(k) (cor-



responding to the spectra S(ω) and S0(ω)) as

βd =− π

ω0
ln

∑k |S(k)|2

∑k |S0(k)|2
. (4)

ω0 stands for the center frequency of the transducers.

3. Solving the Overdetermined System of Lin-
ear Equations

In this section, the Kaczmarz method together with its
modification proposed in [7] are briefly described. Then the
proposed partitioning scheme adopted for the purpose of the
parallelization is explained.

3.1. Kaczmarz Method

The Kaczmarz method [1] is based on the method of pro-
jections which naturally emerges from the physical charac-
ter of the problem.

Let’s assume we have a system of M equations and N
variables describing the image. The bitmap image repre-
sented by a vector of N values can by considered as a sin-
gle point in the N-dimensional space. Then, each equation
of the system is regarded as a hyperplane. Providing that
a unique solution exists, it is represented by the intersec-
tion of the hyperplanes. Using such a geometrical interpre-
tation, the Kaczmarz method works as follows: starting in
an arbitrary initial estimation p0, the initial point is pro-
jected by perpendicular projection on the first hyperplane,
giving the estimation point p1. The process of projecting
the actual estimation pi on the (i+1)-th hyperplane is iter-
atively repeated. After reaching the M-th equation, the pro-
cess iterates through the equations again, until the intersec-
tion is achieved.

For the sake of clarity we call the computation of the par-
ticular projection on the hyperplane (corresponding to pro-
cessing of one equation) as an inner iteration and the re-
peated passing through the whole equation system as an
outer iteration.

Apparently, the method does not require the system to
be processed as a whole. The equations are processed se-
quentially. In the i-th inner iteration, only the result of the
(i− 1)-th inner iteration is needed. The method is suitable
for large systems which cannot be fitted into the computer
memory.

In the case of a square system of linear equations when
M = N the method computes the exact solution. However,
we are interested in the overdetermined system of linear
equations (M >> N) when there is no unique solution. In
this case, the Kaczmarz method works as described above,
but instead of reaching the intersection point, it oscillates
in the neighborhood of the intersections of the hyperplanes.

In this case, the optimal solution (as shown in the follow-
ing sections) is usually not reached.

3.2. Kaczmarz Extended Algorithm

To assure convergence to the optimal solution also for in-
consistent problems (overdetermined systems with the pres-
ence of noise), the extended Kaczmarz method has been de-
veloped [7]. The outer iteration consists of two phases. In
the first phase, the right-hand side vector of the equation
set is modified. Then, the second phase takes place in the
same way as in the original Kaczmarz method, i.e. iterat-
ing through all the rows of the system, but using the modi-
fied right-hand side vector.

The first phase is analogous to the original Kaczmarz al-
gorithm, with the difference that the vector of unknowns
is fixed and the right-hand side vector is updated instead.
Furthermore, the system matrix is processed column-by-
column instead of row-by-row. Considering the i-th outer
iteration, the first phase is performed as follows: the compu-
tation is started with an initial point q0 in an M-dimensional
space, which is either the initial right-hand side vector (for
i = 1) or the right-hand side vector updated in the previ-
ous outer iteration (for i > 1). The columns of the system
matrix are understood as hyperplanes in the M-dimensional
space. In the first inner iteration, the initial point q0 is pro-
jected on the first hyperplane represented by the first col-
umn of the matrix. This results in the updated point q1. The
process is iteratively repeated — in the j-th inner iteration,
the actual point q( j−1) is projected on the j-th column of the
matrix.

After passing through all N columns of the matrix, the
point qN is the corrected right-hand side vector used in the
second phase as well as the initial point for the first phase
in the following outer iteration.

The process of correcting the right-hand side vector and
computation of the new estimation of the solution is repeat-
edly iterated until the required precision is achieved.

3.3. Partitioning Scheme

In the described image reconstruction, large equation
systems containing potentially millions of equations are
processed. Thus, parallelization of the methods is of par-
ticular interest. However, in both the original and extended
versions, the computation in each inner iteration depends
on the result of the previous one. Therefore, a partitioning
scheme is proposed, which allows a straightforward paral-
lelization. It is described in the following for the case of the
original Kaczmarz method (the partitioned computation of
the modified right-hand vector in the extended Kaczmarz
method is analogous).



Before the first outer iteration is started, the equation
system is vertically partitioned into K blocks, each having
M/K equations. Then, the starting point p0

i of each block Bi
is set to the same initial value p0 (a zero vector). Then, in-
side a block Bi, the corrections are iteratively computed us-
ing M/K orthogonal projections of the actual point onto the
rows of the block as in the original Kaczmarz method. The
i-th inner iteration inside the block uses the correction com-
puted in the previous inner iteration inside the same block.
After processing all the equations in all blocks, we get K
corrections (one from each block) and apply all of them
on the initial starting point p0. If the obtained vector ful-
fils the precision requirement, the method is stopped, other-
wise new outer iteration is started.

Apparently, this partitioning of the system results in
a simple method for parallelization — each block can be
processed on a different computational node and after all
blocks have been processed, the corrections are applied and
a new distributed outer iteration can be started. However,
due to the partitioning the behavior of the method is sub-
stantially changed. In the following text, we present results
of experimental measurements showing how the precision
and convergence of the method are affected by the parti-
tioning. No mathematical derivation has been performed so
far.

4. Experimental Setup and Results

4.1. Experimental Data

Two data sets were used to test and evaluate the atten-
uation image reconstruction methods. Synthetic radiofre-
quency signals were generated for a simulated object us-
ing Eq. 1 including scattering (1000 scatterers, S0(ω) mod-
elled as a sine function with Gaussian envelope). The ge-
ometry of the modelled ultrasound tomograph was identical
to the experimental tomograph described in the next sec-
tion.

The second data set was acquired using an experimen-
tal ultrasound tomograph, developed at Forschungszentrum
Karlsruhe [8]. It enabled recording of the transmitted, re-
flected and scattered signal within the tomographic plane.
The system consisted of two 16-element transducers im-
mersed in a water tank. One transducer was used as a source
of the emitted ultrasound pulse. The second transducer was
used as a receiver, whereas the radiofrequency signal of
each element was recorded. Both transducers could be in-
dependently positioned on a ring (diameter 12 cm) to em-
ulate a ring of transducers enclosing the imaged object in
a water tank. The ring was divided into 100 equidistantly
spaced positions. The full measurement of one object con-
sisted of about 130 000 radiofrequency signals.

The testing data were recorded from an artificial object.
It consisted of a cylindrical plastic holder filled with gela-
tine. Four cylindrical objects, plastic bags filled with differ-
ent types of oil, were inserted in the gelatine.

4.2. Measure of Error and Stopping Criterium

The usual way of comparing the reference and the recon-
structed image is the computation of the image difference.
Having two matrices are f (m,n) and a(m,n) representing the
reference and the reconstructed image respectively, the im-
age difference ∆(a,b) is computed as the Euclidean norm of
the matrix difference:

∆(a,b) =
√

∑
m

∑
n

[are f (m,n)−a(m,n)]2.

The image difference as the measure of the error between
the original and the reconstructed image is applicable only
in the case of synthetic data where the original reference
image is known. Another error measure, used for both syn-
thetic and measured data is described below.

Having an M×N overdetermined equation system Ax =
b, the error measure is given by residual r based on the vec-
tor Euclidean norm:

r = ||r||2 =

√
M

∑
m=1

|r(m)|2,

where the vector r is computed as r = Ax−b.
The absolute value of the residual is not suitable as the

stopping criterium as for various systems of equations, the
residuals of the acceptable solutions are different. There-
fore, the difference of the two successive residuals |r(i+1)−
r(i)| is used instead. In all experiments the iterations were
stopped if |r(i+1)− r(i)|< 10−10.

The comparison of the residual and image difference for
various numbers of partitions (Fig. 2) shows the similar-
ity of both quantities. Therefore, in the following text, only
residual is used as the error measure.

4.3. Accuracy and Convergence Speed of the Orig-
inal and Extended Method

The graphs in Fig. 3 show the results of an experiment,
where the solution of the system was computed for both the
phantom as well as the synthetic data. The residual is given
as a function of the number of partitions varying from one
(no partitioning) up to 64.

The comparison shows that the extended Kacz-
marz method converges to more accurate results com-
pared to the original one. The residual value in the extended
method is almost constant with increasing number of par-
titions, whereas for the original method it is improved
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Figure 2. Comparison of the residual and
the square image difference (measured using
synthetic data)

with coarser partitioning (2,4 and 8 partitions). This phe-
nomenon is also mentioned in [1]. Generally, the accuracy
of the original method gets closer to the one of the ex-
tended version when partitioning is applied.

Fig. 4 shows the relation between the speed of conver-
gence and the number of partitions. The measure of speed
is expressed as the total number of equations that have to be
solved within one partition during all outer iterations.

In both cases, the extended version of the method is com-
putationally more expensive then the original one. Part of
the reason is the fact that the number of inner iterations
in each outer iteration is doubled for the extended method
compared to the original version. This is due to the modifi-
cation of the right-hand side vector (as described in section
3.2.

The speed of both algorithms improves with the number
of partitions. It was observed that the convergence worsens
with the increasing number of partitions, meaning need for
more outer iterations. That is why the speed improvement
due to the parallel computation of the equation blocks is not
so high.

In general, the original version of the Kaczmarz method
improves with coarser partitioning concerning both speed
as well as the accuracy (with no important gain for more
than 8 partitions). For the extended method, only the speed
of the computation is improved (with no important speed
gain for more than 8 partitions).

5. Conclusions

New possibilities of algebraic reconstruction techniques
applied to attenuation image reconstruction in ultrasonic
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Figure 3. Evaluation of accuracy using resid-
ual (synthetic and phantom data)

transmission tomography have been presented.
The main contribution of the paper is the application of

these techniques in ultrasound transmission tomography to-
gether with a new partitioning scheme.

The use of algebraic reconstruction techniques instead
of standard filtered backprojection enables future incorpo-
ration of nonstraight propagation path of ultrasound beams
(i.e. reflected and scattered wave) into the image reconstruc-
tion problem.

The partitioning scheme offers a straightforward paral-
lelization of the algebraic reconstruction technique. It was
adopted to both the original as well as the extended Kacz-
marz methods. Both versions were compared with respect
to the accuracy of the computed results and the speed of the
computation. In both cases the partitioning leads to a con-
siderable speed-up of the computation (up to 26× for the
original method and 3× for the extended method). The par-
titioning is meaningful up to a certain number of partitions
(about 8), for more partitions, the speed does not increase
any more. The partitioning of the system also positively af-
fects the accuracy of the original Kaczmarz method. On the
other hand, the accuracy of the extended Kaczmarz method
is not affected by the partitioning. The extended Kaczmarz
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Figure 4. Speed of convergence (synthetic
and phantom data)

method had superior accuracy over the original method.
In the future, the parallel version of the solver based

on the partitioning scheme will be implemented for solv-
ing large overdetermined systems of linear equations (in or-
der of millions), including the reflected and scattered field.
Also some new methods of partitioning the system matrix
based on the implicit properties of the modelled problem
will be studied.

Acknowledgements

The project has been supported by the Czech Ministry of
Education, Youth and Sports (Research Center DAR, proj.
no. 1M6798555601) and the joint program of the German
Academic Exchange Service and the Czech Academy of
Science (grant. no. D-CZ 22/05-06). We are also grateful
to MetaCentrum for offering the computational resources.

References

[1] A. C. Kak and M. Slaney, Principles of Computerized Tomo-
graphic Imaging. Society of Industrial and Applied Mathe-
matics, 2001.

[2] J. F. Greenleaf and R. C. Bahn, “Clinical imaging with trans-
missive ultrasonic computerized tomography,” IEEE Trans.
Biomed. Eng., no. 28, pp. 177 – 185, 1981.

[3] R. M. Schmitt, C. R. Meyer, P. L. Carson, T. L. Chenevert,
and P. H. Bland, “Error reduction in through transmission to-
mography using large receiving arrays with phase-insensitive
signal processing,” IEEE Trans. Sonics and Ultrasonics, vol.
SU-31, no. 4, pp. 251–258, 1984.

[4] A. C. Kak and K. A. Dines, “Signal processing of broadband
pulsed ultrasound: Measurement of attenuation of soft biolog-
ical tissues,” IEEE Trans. Biomed. Eng., vol. BME-25, no. 4,
pp. 321–344, 1978.

[5] D. W. Fitting, P. L. Carson, J. J. Giesey, and P. M. Grounds,
“A two-dimensional array receiver for reducing refraction ar-
tifacts in ultrasonic computed tomorgaphy of attenuation,”
IEEE Trans. Ultrason. Ferroelec. Freq. Cont., vol. UFFC-34,
no. 3, pp. 346–356, 1987.

[6] R. Jirik, R. Stotzka, and T. Taxt, “Ultrasonic attenuation to-
mography based on log-spectrum analysis,” in SPIE Interna-
tional Symposium on Medical Imaging, San Diego, USA, vol.
5750, 2005, pp. 305–314.

[7] C. Popa and R. Zdunek, “Kaczmarz extended algorithm for
tomographic image reconstruction from limited-data,” Math.
Comput. Simul., vol. 65, no. 6, pp. 579–598, 2004.

[8] R. Stotzka, J. Würfel, and T. Müller, “Medical imaging by
ultrasound computertomography,” in SPIE’s Internl. Symp.
Medical Imaging 2002, 2002, pp. 110–119.


