
 
 

 

  

Abstract: EEG is one of the most important methods of 
studying the maturation of the child brain.  A newborn infant 
typically sleeps approximately 70 per cent of 24 hour interval. 
Sleep in infants is significantly different from sleep in adults. 
This paper addresses the problem of multichannel analysis of 
newborn EEG signals. The designed technique will be 
applicable to other similar problem in medicine as well. We 
apply designed methods for problem of the differentiation 
between three important neonatal states: quiet sleep, active 
sleep and wakefulness state. The proportion of these states is a 
significant indicator for maturity of the newborn brain in 
clinical practice. In this study we have used data provided by 
the Institute for Care of Mother and Child in Prague (12 
similar aged newborn infants). All recordings have eight EEG 
channels (these are FP1, FP2, T3, T4, C3, C4, O1, O2), 
Electrooculogram (EOG), Electromyogram (EMG), 
Respiratory (PNG) and Electrocardiogram (ECG). Data are 
scored by an experienced physician to four states (wake, quiet 
sleep, active sleep, movement artifact). For accurate 
classification it is necessary to find or calculate most 
informative features. In our approach we use a method based 
on power spectral density (PSD) applied to each EEG channel. 
We also use features derived from EOG, EMG, ECG and PNG 
signals. The most informative one is the measure of regularity 
of respiration from PNG signal. We have designed an 
algorithm for interpretation of these characteristics. This 
algorithm is based on Markov models. The indispensable part 
of our work is a comparison of the classifier based on Markov 
models with various learning algorithms, in particular nearest 
neighbour, cluster analysis, and induction of decision rules. 

I. INTRODUCTION 
HE Electroencephalogram (EEG), describing the 
electric activity of the brain, contains a lot of 
information about the state of patient health. It has the 

advantage of being non-invasive and applicable over longer 
time span (up to 24 hours if necessary). This is an important 
feature in case we want to follow disorders that are not 
permanently present but appear incidentally (e.g. epileptic 
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seizure) or under certain conditions (various sleep 
disorders). 

The main objective of our work is the design and 
implementation of appropriate algorithms for neonatal sleep 
stage classification. During sleep, human brain goes through 
several psycho-physiological states that are relatively stable. 
Many nervous centres are inactive, so brain becomes a less 
complex system and is a suitable object for mathematical 
modelling. Sleep stages classification is one of the 
diagnostic tools needed for proper assessment of a number 
of sleep disorders and other neurological problems [25]. The 
characterization of the recorded bioelectrical signals is based 
mainly on the spectral frequency analysis by Fast Fourier 
Transform (FFT). 

In [20] authors described the neuro-fuzzy system for 
classification of sleep-waking states in healthy infants. They 
used classifier with a pruning algorithm and achieved 
accuracy about 70%. In [21] authors compared two methods, 
heart rate variability and actigraphy, to offer alternative 
techniques for sleep-wake identification compared to 
manual sleep scoring. They achieved accuracy 75-80%. 
Also other publications noted accuracy about 60-80%. Some 
authors described methods with very high classification 
accuracy. For example in [22], [26] there are published 
methods with accuracy more than 95%. But they use the 
same data for learning and testing. We use data from several 
newborns for learning, and for testing we use data from 
another newborn. We utilize hidden information obtained 
from more biological signals (EEG, ECG, PNG, EMG, 
EOG) for final classification. 

In this study we use data from newborns with a similar 
gestational age. In [27] there are published results of 
classification of preterm and term infants from Amplitude-
integrated electroencephalography (aEEG). 

We have discussed with neurologists the problem of 
manual scoring accuracy between two or more neurologists, 
and it is about 70-80%. Therefore it is suitable to show not 
only final classification but also relevant characteristics from 
all measured signals. 

II. SLEEP STAGES 
Sleep is a non-uniform biological state that has been 

divided into several stages based on polysomnographic 
measurement (PSG) that includes electroencephalogram 
(EEG), electrooculogram (EOG), electromyogram (EMG), 
and oxygen saturation of the blood (SpO2). It is the most 
accurate procedure and is considered to be the „gold 
standard“ in determining sleep states. In addition it is 
possible to record electrocardiogram (ECG) or respiration 
(PNG). Polysomnography is usually performed over the 
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duration of entire night, or at least 6.5 hours, in order to 
investigate normal and disturbed sleep or vigilance [1]. 

A newborn infant typically sleeps about 70% of every 24 
hours and has two different sleep states that occur in 
alternating cycles of tens of minutes. These stages have been 
termed quiet sleep and active sleep, corresponding 
respectively to NREM sleep and REM sleep in adults. 
Active sleep is characterized by irregular breathing, saccadic 
eye movements, small bodily movements and twitches. In 
contrast to adult REM sleep, peripheral motor pathways are 
not depressed during active sleep in neonates, making 
movements possible. During quiet sleep, breathing is 
regular, and eye and bodily movements are absent. The 
states have EEG correlates: EEG in quiet sleep shows either 
continous high-voltage low-frequency (HVLF) activity or 
tracé alternant, in which HVLF activity alternates with quiet 
periods in cycles of few seconds. In active sleep, the EEG is 
relatively quiet [3]. 

III. MATERIAL AND METHODS 
Data used in this study are provided by the Institute for 

Care of Mother and Child in Prague (12 infants, normal term 
gestation, recorded 5-10 days after childbirth, recorder time 
is about 3 hours for each infant). All recordings have eight 
EEG channels (these are FP1, FP2, T3, T4, C3, C4, O1, O2), 
Electrooculogram (EOG), Electromyogram (EMG), 
Respiratory (PNG) and Electrocardiogram (ECG). Data are 
scored by an experienced physician to four states (wake, 
quiet sleep, active sleep, movement artifact). Data are 
continuous and rather complex. Therefore it is impossible to 
classify these raw data. In the next subsections we describe 
feature extraction from individual signal types. 

A.  EEG FEATURE EXTRACTION 
The feature extraction is the automated recognition of 

various features on an EEG signals. Power spectral density 
(PSD) is the most suitable feature in this case. Frequency 0.5 
to 3Hz is an important feature for sleep staging. It occurs at 
the quiet stage and is very low at stages of wake and active 
sleep. It is affected by a pattern known as Tracé alternant 
(TA). TA pattern [11] is characterized by the occurrence of 
3 to 5 second bursts of high amplitude (50 to 100 µV) slow 
activity (0.5 to 3.0 Hz), which occur at intervals of 3 to 10 
seconds when the background is of relatively low amplitude 
(10 to 25 µV). We have been inspired by [15] when 
designing the frequency features. 

Next we recognize quiet sleep from PSD. In Fig. 1 there 
is shown our simple method for detection of quiet and active 
sleep. (This method was not suitable for all our data, so we 
use also method described in section III.F). First we 
compute the function FD. It is in detail shown in (1). We set 
constant t0 to 10 minutes. We utilize the following found 
properties: quiet sleep is perceptible mainly on C3 and C4 
electrodes and other states on electrodes T3 and T4. Finally 
we find minima and maxima of this function corresponding 

to start and end of the quiet sleep. We use an adaptive 
algorithm for it. We expect the alternating of maxima and 
minima. These values are taken over a one-minute window. 
 

 
Fig. 1. PSD of all EEG channels (0.5 to 3Hz) and output classification. 
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B. REGULARITY  OF  RESPIRATION  
One of the criteria for determination of the newborn 

behavioral states is the regularity of respiration. To 
determine the properties of signals in terms of shape and 
periodicity the autocorrelation function is often used [17], 
[18]. One segment of data (in our case 20 seconds of PNG 
signals) is correlated with its copy, in small steps shifted in 
time. At  the t=0 correlation is one, a shift of half a period 
results in a negative maximum and a shift of a full period 
shows a positive maximum again. The waterfall plots of the 
quiet and active sleep states show a clear difference in the 
magnitude of the second peak (see Fig. 2). The correlation 
coefficient of this second peak is therefore a good measure 
for regularity. It is necessary to solve the problem of the 
second peak position estimation. This value corresponds to 
the heart beat. We compute appropriate heart beat from 
respiratory signal over a one minute window. Final feature 
corresponding to regularity of respiration is shown in Fig. 3. 



 
 

 

 
Fig. 2. Waterfall plots of autocorrelation functions computed from 
the respiration signal. 

 

 
Fig. 3. Final regularity of respiration 
 

C. EYE MOVEMENTS 
Eye movements are known to be good measures for 

stages identification. For our problem, it should only appear 
in stages wake and active sleep. In the quiet stage there 
should not be any eye movements. 

We detect eye movements using the modified method 
developed by Varri et. al. [12]. In the original method, the 
threshold value was set to 10 µV. In our method the 
threshold value is calculated for each recording in the 
following way: 1. Standard deviation of the recording is 
calculated in 60 second window. 2. The median value of the 
standard deviations from the whole signal is chosen to the 
new threshold value. Next the output of the eye movement 
detection algorithm is converted to 1-2 Hz. The maximum 
value of eye movements over one second window is chosen 
as the output. The result is shown in Fig. 4. 

 
Fig. 4. Detection of eye movements 

D. STANDARD DEVIATION OF EMG 
One simple feature is sufficient for detection of 

movement artifacts. It is the standard deviation of signal 
obtained from muscle activities (chin EMG). Large majority 
of movement artifacts are present at EMG channel 
(characterized by the very high amplitude). For further 
processing it has no sense to classify segments that include 
movement artifact. We improve the accuracy of artifact 
detection using combination of mean and max filters (first 
we use mean filter over a ten second window and as the next 
step we use maximum value from a one-minute window). 
The result is shown in Fig. 5. For successive classification it 
is possible to apply thresholding of output characteristic 
(threshold computation from combination of 
mean/median/min/max functions). 
 

 
Fig. 5. Standard deviation of EMG signal 

 

E. HEART RATE 
The amplitude and the regularity of heart rate is changed 

during wake and quiet/active sleep. Regularity is good 
indicator of quiet sleep. In this stage heart rate is low and 
mainly regular. From the highest amplitude it is possible to 



 
 

 

estimate wake stage. 
For detection of the heart rate from ECG signal, it is 

necessary to be able to detect QRS complexes. Various 
methods can be used for that. One popular algorithm was 
presented by Pan and Tompkins [6]. In this work, we use a 
modified version of this algorithm (see Fig. 6). At first we 
detect the QRS intervals and then we find the R-wave peaks 
by searching those intervals. Physiologically, the QRS 
complexes cannot occur closer than 200 ms to each other. If 
any two R-wave peaks occur faster than this, the later peak 
is considered an artifact. Finally we compute number of R-
waves in 60 second intervals.  

 

 
Fig. 6. Algorithm for heart rate detection (on the up) and 
example of  use (on the down) 

 
In Fig. 7 heart rate in beats/minute is shown. For 

increasing robustness of this method we use mean filter. 
 

 
Fig. 7. Final heart rate feature in beats/minute 

F. PCA, CLASSIFIER COMPARISON 
In Fig. 8 the block diagram for classifier comparison is 

shown. We apply principal component analysis [13], [14] 
for all 12 described features - 8 from EEG (PSD 0.5 – 3Hz 
for 8 EEG channels) and 4 from PNG/ECG/EOG/EMG. We 
use PCA for data compression (reducing the number of 
dimensions, without significant loss of information). In this 
way we obtain 3 final features (these contain about 93% of 
information compared to original features). Before PCA we 
do not use normalized features, we only center them 
(applying the subtraction of the mean value). After PCA we 
use for classification Hidden Markov models, nearest 
neighbour, cluster analysis and decision rules. The training 
data set for model learning is created in the same way (the 
feature extraction and PCA). We consider manual scoring 
provided by a neurologist as correct classification class. 

 

 
Fig. 8. Block diagram of the method used for classification 
 

G. HIDDEN MARKOV MODELS 
In the process of the classical pattern recognition we 

classify each segment on the basis of the features obtained 
from this segment. Hidden Markov models (HMMs) are 
widely used for this problem [23]. HMMs are a special class 
of stochastic processes that uniquely determine the future 
behaviour of the process by its present state. We use the EM 
algorithm for finding the maximum-likelihood estimate of 
the parameters of HMMs given a set of observed feature 
vectors. This algorithm is also known as the Baum-Welch 
algorithm [9]. The Baum-Welch algorithm starts from an 
initial model and iteratively improves it until convergence is 
reached (in our case it is sufficient to use 10 interactions). 
Since the Baum-Welch algorithm searches for a locally 
optimal HMM with respect to the likelihood function, the 
choice of an initial model is crucial [24]. We compute this 
initial model from the training data set. 

We have designed a HMM structure and we have used the 
probabilities for description of all relations. In our case, 
HMMs allow to describe relations between features and 
hidden states (all sleep stages) and mutual relations between 
individual hidden states (see Fig. 9). We use four hidden 
states - active sleep, quiet sleep, wake stage and movement 
stage. The introduced method is very useful for our problem. 
Likewise if there exist segments about which we have no 



 
 

 

information, HMMs allow classify these segments by using 
known state-transition probabilities. 

 

 
Fig. 9. Hidden states structure, p1-p6 and pA-pF are transition 
probabilities 
 

H. NEAREST NEIGHBOUR, CLUSTER ANALYSIS, 
DECISION RULES 
We compare results from HMMs with others classifier. 

Final accuracies are described in section IV. First we have 
used a method based on the nearest neighbour classifier. 
This very simply model depends on the quality of the 
training set. It is possible to achieve good results on the 
known data (the training data set corresponds to the testing 
data set), but it has no ability of generalization. This 
classifier does not work correctly on the unknown data. 

Next we have tested cluster analysis. In the output feature 
space we have tried to find significant four clusters. The 
found centres of these clusters are classified using the 
nearest neighbour classifier to individual neonatal states. 
This analysis is not extremely accurate, but it separates some 
states (active sleep and movement stage). 

The classifier based on decision rules has not only been 
good classifier, but it has also described important trends in 
data. For the decision rule classifier we do not use features 
after PCA processing but those original 12 features. The 
accuracy and the ability of generalization has influenced 
number of used rules (optimal number has been 10-15 
different rules, great number of rules means high accuracy 
but low ability of generalization). We use Weka software 
[19] for finding the rules. 

IV. RESULTS 
In this section we summarize the results of our research. 

[Table I] shows all recognized dependencies. Similar results 
are described in [16]. All neonatal states have been 
recognized by combination of EEG, EMG, EOG, PNG and 
ECG features. The accuracy of classification is in detail 
shown in [Table II] and [Table III]. 

V. CONCLUSION 
Sleep in infants is significantly different from sleep in 

adults (both sleep architecture and continuity). In this paper 
methods  for  classification of the newborn  EEG  have  been  

 
TABLE  I. 

STATE-RELATED POLYGRAPHIC CHANGES 

 
 

TABLE II. 
 FINAL ACCURACY OF CLASSIFICATION 1 

 
We have used all data from 12 newborns and cross-validation (10 

group). For HMMs we use the training set only for learning of an initial 
model. For cluster analysis we use the training set only for classification of 
final clusters (by the nearest neighbour method). 

 
TABLE III. 

FINAL ACCURACY OF CLASSIFICATION 2 

 
We have used data from 11 newborns for learning and data from 

remaining one newborn for testing. This procedure has been repeated for all 
newborns and computed mean value. For HMMs we use the training set 
only for learning of an initial model. For cluster analysis we use the training 
set only for classification of final clusters (by the nearest neighbour 
method). 

 
presented. The approach has been tested on real sleep EEG 
recording for which the classification has been known. The 
aim of these methods is to ease the work of medical doctors. 
During automated classification we have problem with clear 
separation of stages of wake and active sleep. Now we try to 
find hidden information enabling this separation. We are 
developing methods for rapid eye movements detection from 
EOG signals and try to detect specific graphoelements in 
EEG signals. 

Computer-assisted methods can extend our abilities to 
examine physiologic relationships between cerebral and 
non-cerebral measures, and explore associations with 
representative outcome variables. 

In our further research we will develop methods for 
quantification that can help in evaluation of newborns brain 
maturity. These methods can be used for on-line analysis of 
premature newborns. Nowadays this analysis is made only 
in off-line mode (measuring of appropriate signals and 
manual scoring by a physician afterwards). 
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