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Abstract— To detect and predict epileptic seizures from brain
electrical potentials, changes in the dynamics of the underlying
nonlinear system can be utilized. Several approaches exist,
where first a univariate signal is embedded into phase space
and then features are extracted from the reconstructed states
in phase space. In this paper we introduce a novel method
that uses a bivariate approach in phase space, the Bivariate
Phase Space Divergence (BPSD), to detect dynamical changes
due to an epileptic seizure. To calculate BPSD, we embed two
simultaneously recorded time series into phase space and define
the divergence as the increase in the distance between two initially
neighboring points on the two trajectories. The value of BPSD is
large if two neighboring states diverge quickly in time, whereas
small values are found for states that show a similar evolution in
phase space. By directly using a bivariate approach of a channel-
wise embedded bivariate signal our method is different from
other measures that are used to detect changes in dynamics using
only one single univariate embedding.

When applying our measure to ECoG data we found high
values of BPSD in the seizure free time and a clear drop of
the feature during the ictal period. Our findings are in good
agreement with the proposed neurophysiological mechanism that
different areas of the brain synchronize during an epileptic
seizure which should lead to a similar evolution of neighboring
states in phase space. To compare our measure with results
from univariate algorithms we calculate the mean of all BPSD
combinations for one channel versus all other channels of one
hemisphere and compare these results with the Short Term
Lyapunov exponent.

I. INTRODUCTION

1% of the world’s population suffer from epilepsy. In about
65% of these patients seizures can be controlled efficiently
with anti-epileptic drugs. Another 8% can be treated with
epilepsy surgery. For a successful surgical treatment the exact
localization of the epileptic focus is required. To locate these
focal regions, longtime electroencephalograms (EEG) and in
ambiguous cases electrocorticograms (ECoG) are recorded.
Due to the long recording period, which typically is in the
order of 90 hours, the analysis of these data is a very time
consuming and expensive process. Automatic online seizure
detection during recording could reduce the analysis time sig-
nificantly. In addition, if seizures could be reliably predicted,
an automatic warning system could help those patients that
can not be treated with drugs or surgery.
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Several features have been reported in the literature that
can be applied to detect or predict epileptic seizures from
electrical brain signals. These approaches include e.g. energy
based measures [1], [2], [3], wavelet-based methods [4] or
synchronization based methods [5], [6], [7], [8]. Methods from
nonlinear time series analysis applied to ECoG recordings
have proven to give important information about dynamical
changes in the brain leading to the occurrence of seizures
[9], [10]. One of these measures that has been applied to
the analysis of EEG-data is the Largest Short Term Lyapunov
Exponent (STLmax) [11], [12], [13], which is an indicator for
chaoticity of the underlying system. For the estimation of the
STLmax, the signal from one recording site is embedded into
phase space and the feature is extracted from the embedded
states. However, it does not exploit information about the
spatio-temporal behavior of the underlying system that can be
extracted from a multivariate signal recorded simultaneously
at different recording sites unless the results obtained from
signals from different channels are combined in a new feature
for multivariate signals [12], [13].

In this paper we introduce a novel method for bivariate
time series to calculate a feature in phase space that can be
interpreted as a measure for predictability of one signal in
phase space given a different signal. We use the conventional
delay embedding introduced by Takens [14] for the recon-
struction of the phase space for each signal and quantify the
divergence of neighboring states in phase space coming from
different recording sites. In contrast to measures like STLmax
we directly use a bivariate approach to calculate the divergence
feature from those different embedded signals.

II. METHOD
A. Bivariate Phase Space Divergence

For any finite time series, points in phase space of the under-
lying system can be reconstructed using the delay embedding
method described by Takens [14]. With adequate choice of
phase space dimension D and time delay 7 this reconstructed
phase space is equivalent to the phase space of the underlying
system.

Given a bivariate finite time series X of length T as

T1,1 T1,2 1,17

X =
x21

the set of points {xs¢|s =1,2;t =1,2,..., T — (D —1)7}
in related phase space of dimension D can be reconstructed
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by delay embedding with

Xs,t = [xs,ta Lsttr1s Ts 4275 -+ Lst+(D—1) 'r]-

Note that for such an embedding the length 7" of the time series
must be sufficiently large, i.e. T > (D — 1) 7. Any sequence
[Xs,t1>Xs,t14+15 - - -, Xs.t,] i phase space with {t1,¢2} € N and
t;1 <ty <T — (D —1)7 is called a trajectory.

To calculate a measure for divergence in phase space using
two different time series {zs|s = 1,2;t =1,2,...,T} of a
system, for every reconstructed point in phase space X, ¢,
the nearest point reconstructed from the other time series
Xso,t(t1)s with sq 75 S, 11, t(tl) < T - (D — 1)7’ — At
and t(t1) ¢ [t1 — 0,1 + 0] with § <« T is taken. Let
d(Xs, ;5 Xs,4(,)) denote the euclidean distance of these two
points at time ¢;. Comparing this distance with the distance
d(xsl7t1+m,XSQ,t(tl)JrAt) of the trajectories at time ¢; + At
and t(¢1) + At, respectively, the divergence of the trajecto-
ries can be quantified. If the trajectories diverge from each
other, such that the state X, ;,+a+ is not in the vicinity of
Xgo,t(t1)+A¢» it 1S impossible to draw any conclusions from
Xgy,¢(¢1) 1O the future state X, ;(s,)4a¢ by following the trend
of a neighboring trajectory in phase space starting at X, ;. In
the other case, if neighboring trajectories continue to run close
to each other, future states of the reconstructed trajectories
Xs, ¢, +A¢ Of one time series will help to forecast future states
Xso,t(t1)+A¢ Of the other trajectory.

For exponential divergence the distance between succeed-
ing points on these trajectories can be approximated by an
exponential function

AA
d(XS1,t1+AtaXSQ,t(tl)-i-At) ~ d(xshtuxsz,t(h)) € t' (1)
We now introduce the mean divergence function depending on
At as
T—At
D 10g(d(Xs 114 A0 Xag (1) +A1))-

t1=1

P(A) = ——

With (1) the slope of this function is approximately linear. To
quantify the increase of the distance between points X, ¢, +A¢
and X, 4(¢;)+a¢ On the two trajectories, we take the first
derivative of P(At) as our measure for BPSD.

B. ECoG Data

Electrocorticograms (ECoG) were recorded from three pa-
tients suffering from temporal lobe epilepsy. For presurgical
evaluation four to five stripes with six or eight electrodes have
been surgically implanted subcranially over the temporal lobe.
For one patient the schematic electrode placement is depicted
in Fig. 1B. On each electrode contact, electrical potentials
were recorded with a sampling frequency of 256 Hertz. ECoGs
were measured over a period of at least 90 hours. If possible,
for our analysis we used sequences of about 2.5 hours before
and after the ictal phase that did not contain any further
seizures (for details see table I). The unequivocal seizure onset
for each patient, i.e., the time where first epileptic patterns
occur in the ECoG, and the focus electrodes, where these
patterns can be seen at first, were defined by clinical experts.

TABLE I
CHARACTERISTICS OF ANALYZED ECOG-DATA: PATIENTS ARE
NUMBERED FROM 1-3, LOCATION OF THE FOCUS WAS EITHER LEFT OR
RIGHT TEMPORAL WITH GENERALIZED EPILEPTIC ACTIVITY IN PATIENT 3

Pati- Location of Nr. of Duration Nr. of
ent epileptogenic focus elec- seizures
trodes recorded

1 right temporal 32 ~11h 3

2 1st seizure left 28 ~11h 4

temporal, others right
temporal
3 starts right temporal, 32 ~3h 3
later generalized
Total ~25h 10

To calculate BPSD on ECoG data, we first reduced record-
ing artifacts by excluding sequences which show extremely
high or low amplitudes or variance. 50Hz line noise was
removed using a notch filter and the normalized signal (zero
mean, unit variance) was embedded into phase space. For the
embedding dimension D and time delay 7 we chose constant
values of D = 7 and 7 = 15 ms [12]. A moving average filter
of length 10 was applied after the calculation of BPSD within
a moving window.

C. Latency

An important parameter for automatic seizure detection is
the latency. It is defined as the time between the unequivocal
seizure onset and the first drop of the signal below a given
threshold. The threshold was determined as the minimum
value of BPSD after application of a moving average filter
of length 10 over a period of 20 minutes before seizure onset.

III. RESULTS
A. BPSD of ECoG data from epilepsy patients

BPSD was calculated for all seizures of the three patients
for all possible channel combinations. Figure 1A shows typical
time courses of five hours of BPSD calculated from data of
patient one (see table I). The feature was calculated within
non-overlapping moving windows of five seconds. The focal
channels for this seizure were C2, D1 and D2. The example
shows the BPSD between channel C2 and C1, C3-C5, D1-D4,
all lying within the focal area of the patient. The inset (Fig.
1B) gives the anatomical position of these eight electrodes
highlighted by a gray polygon.

An ictal decrease of BPSD is clearly visible for all combi-
nations shown. The strongest drop is found for those combina-
tions that contain two of the three focus electrodes (C2/D1 and
C2/D2). This drop is less pronounced for combinations that
contain electrodes located more distant from the focal area
(C2/Cs5, C2/D4). In addition to the ictal drop, an increase of
BPSD is found during the postictal phase. This increase lasts
for about 60 minutes.

To determine the latency of the ictal drop, Fig. 1C and 1D
show magnifications of BPSD five minutes before and after
seizure onset for the two combinations C2/C3 and C2/D2. The
unequivocal seizure onset is marked with a dot-dashed line.
The first data point that drops below threshold is marked with
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A: Five hours of BPSD calculated between data from focus channel C2 and channels in the vicinity of the focal area as labeled on the y-axis. B:

Schematic view of the electrode placement for patient one. Filled and open circles in the right hemisphere are referred to as channels C1 to C8 and DI to
D8, respectively, on the left hemisphere as Al to A8 and B1 to B8, respectively. Electrodes located more medial have smaller numbers. The polygonal area
marks the electrodes used for the calculation in A. C and D: Magnification of the BPSD for channels C2/C3 and C2/D2, respectively. The dot-dashed line
marks the unequivocal seizure onset. The first data point below threshold is marked with a circle. The latency relative to seizure onset was 45 seconds. E:
Raw ECoG-sequence recorded on electrodes C2 and C3 in the time window indicated by solid vertical lines in C.

a circle. For this example we found a latency of 45 seconds
for both channel combinations. In order to determine which
property of the ECoG-signal leads to the drop in the BPSD, we
compared the time course of the feature with the raw ECoG-
Signal. Figure 1E shows these ECoG-sequences recorded at
electrodes C2 and C3. The time period of the raw signal is
indicated by solid vertical lines in Fig. 1C. The circle marks
the first drop of BPSD below threshold and corresponds to a
time window between 22:30:51 and 22:30:56. Comparing raw
signal and BPSD shows that the initial large drop in BPSD is

due to strong oscillations starting at 22:30:51.

Analysis of all 25 hours of ECoG data from three differ-
ent patients containing ten temporal lobe epileptic seizures
revealed a clear drop of the BPSD for several channel com-
binations during the ictal period for each seizure. This drop
was most clearly seen in combinations containing at least one
channel placed in the vicinity of the focal area. In contrast,
BPSD calculated between channels far away from the focal
region showed no drop or only a small decrease during
the ictal period. We found an increase of BPSD lasting for



15 minutes to one hour during the postictal phase for all
seizures. However, the strength of this increase showed a high
variability within as well as between patients.

Analysis of the latency of BPSD between unequivocal
seizure onset and the time point where it drops below a given
threshold revealed results that varied significantly between pa-
tients. Whereas patient one showed latencies of approximately
45 seconds, patients two and three showed smaller latencies of
about 10 to 20 seconds. In some channel combinations even
smaller latencies could be observed and for two seizures of
patient two BPSD dropped below threshold slightly before
unequivocal seizure onset.

B. Comparison of BPSD with STLmax

A univariate measure related to BPSD and applied fre-
quently to ECoG-data is the STLmax [11], [12]. It determines
the increase of the distance between initially neighboring
points of one trajectory obtained by embedding only one time
series whereas BPSD quantifies the increase of the distance
between points on two trajectories obtained by embedding
two different signals. In order to compare the two measures
we calculated the mean of BPSD for the combination of all
channels of the hemisphere where the epileptic focus was
located with a given channel. STLmax was calculated using
the same embedding parameters as for BPSD.

When comparing STLmax computed for a focus channel
with the mean BPSD for the same focus channel versus all
other channels of one hemisphere we found comparable drops
for BPSD and STLmax for all seizures studied. An example
taken from patient one is shown in Fig. 2. In addition, we
found several seizures where the drop in BPSD was more
pronounced. During some seizures BPSD shows significant
drops over a longer period of time. In addition, the variance
of the signal outside the ictal period was often lower for the
mean BPSD than for STLmax.

IV. DISCUSSION

Our results of the calculation of BPSD showed that it can
be used for a reliable detection of epileptic seizures from
ECoG-Data. The decrease of the feature during ictal periods
is strongest for combinations containing at least one focal
channel and less pronounced if channels more distant from the
focal region are involved. Comparing the mean of BPSD with
estimation of STLmax showed a comparable decrease during
seizures. However, smaller variance of the mean BPSD outside
the ictal periods might make this measure a more promising
candidate for epileptic seizure detection.

In contrast to STLmax, BPSD can not be interpreted as a
measure for chaoticity. Whereas small values of BPSD are
an indicator for less chaoticity of the underlying systems,
increasing values can not be interpreted as an increase of
chaoticity because high values can also be found for non
chaotic but independent systems. The decrease of BPSD can
instead be interpreted as an increase in predictability of one
channel given a second channel. Two points on two different
trajectories that are close in state space reflect similar states
for the two underlying systems. If BPSD shows small values,
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Fig. 2. Comparison of STLmax calculated for electrode D2 (top) and the

mean of BPSD for channel D2 and all other channels of the same hemisphere
(bottom). The dot-dashed line marks the unequivocal seizure onset.

these two neighboring states on the two different trajectories
depart slowly in time. Hence, information about the time
course of the state of one channel could help to predict the
future evolution of the state of a second channel. If, in turn,
BPSD shows large values, i.e. the two states depart quickly
in time, it becomes increasingly difficult to predict the future
evolution of one state given information about the second.
Due to this interpretation it would be interesting to study
BPSD in the context of Granger causality (GC). GC quantifies
the directed causal dependence between two time series. [15],
[16]. A common approach is to compare the regression error
of two separate univariate signals with the regression error of
the combined bivariate signal. Further research should be done
to investigate the relationship of BPSD and GC.

A disadvantage of BPSD in the context of epileptic seizure
detection is the time consuming computation needed to cal-
culate this measure. In order to reconstruct a trajectory that
reflects the dynamics of the system reasonable well, a sliding
window has to have a minimal size. A nearest neighbor search
has to be done for each channel combination, which for
larger sliding windows is a very expensive function. Given
signals from n different channels and using the symmetry of
BPSD, i.e. BPSD for channel combination A/B is equal to
channel combination B/A, one has to calculate W channel
combinations for each sliding window.

Extending the bivariate version described within this paper,
BPSD can be formulated for the multivariate case involving
more than two channels. While it is fairly straight forward
to extend the computation of nearest neighbor search to a
multivariate signal, finding a divergence function that allows
a meaningful interpretation is not obvious for more then two



signals. Furthermore, a multivariate version of BPSD will most
likely result in an even more time consuming computation.

V. CONCLUSIONS

In this paper we introduced a novel measure for the analysis
of bivariate time series in phase space that can be applied
for a reliable detection of epileptic seizures. Performance as
defined by an ictal drop relative to baseline is comparable
with STLmax but the mean BPSD shows a smaller variance
outside the ictal period. It can be interpreted as a measure for
phase space predictability. Further research will be necessary
to compare this measure with other prediction measures such
as GC and to further explore the spatio-temporal information
contained in BPSD.
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