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Abstract—Epilepsy is one of the most common brain 

disorders and may result in brain dysfunction and cognitive 
disturbances. Epileptic seizures usually begin in childhood 
without being accommodated by brain damage and many 
drugs produce no brain dysfunction. In this study cognitive 
function in mild epilepsy cases is evaluated where children with 
seizures are compared to controls i.e., children with epileptic 
seizures, without brain damage and under drug control. Two 
different cognitive tasks were designed and performed by both 
the epileptic and healthy children: i) a relatively difficult math 
task and ii) Fractal observation. Under this prism, we 
investigate seven measures of quantifying synchronous 
oscillatory activity based on different underlying assumptions. 
Namely, the most widely used coherence, a coding-based 
measure known as MDL (Minimum Description Length) and 
the Geweke alternative, a robust phase coupling measure 
known as PLV (Phase Locking Value), a cortical synchrony 
measure defined from the embedding dimension in state-space 
called S-estimator, a reliable way of assessing generalized 
synchronization also in state-space and an unbiased alternative 
called Synchronization likelihood. Assessment was performed 
in three stages; initially the methods were validated on coupled 
nonlinear oscillators, secondly surrogate data testing was 
performed to assess the possible nonlinear nature of the 
acquired EEGs and finally synchronization on the actual data 
was measured. The results on the actual data suggest higher 
frequency band gamma2 was mostly apparent in occipital-
parietal lobes during fractal tests. 
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I. INTRODUCTION 
EURONAL dynamics and synchronization phenomena 
have been increasingly recognized to be an important 

mechanism by which specialized cortical and sub-cortical 
regions integrate their activity to form distributed neuronal 
assemblies that function in a cooperative manner [1]. 
Synchronous oscillations of certain types of such assemblies 
in different frequency bands relate to different perceptual, 
motor or cognitive states and may be indicative of a wider 
range of cognitive functions or brain pathologies [2][3]. In 
general, low frequencies, like the theta band, are believed to 
reveal the coupling between distant brain regions, whereas 
high frequencies, like the gamma band, are thought to be 
more important for short range interactions [4]. 

The traditionally formulated but still the most common 
way of analyzing the functional coupling of cortical 
assemblies has been the magnitude squared coherence 
(MSC) or coherence. MSC is a normalized measure of linear 
dependence between two signals and is capable of 
identifying linear synchrony on certain frequency bands 
[5][6][7], but it is not able to give indications on the 
feedback that exists between the analyzed systems. The idea 
of measuring the causality between two time series can be 
traced back to the work of Granger [6] and Geweke [9]. The 
results of Geweke are especially important for neuroscience 
to evaluate neuronal interactions [10], because they give 
frequency decompositions for the time domain measures. 
The latter method relies on strong assumptions for the 
autoregressive representation of the analyzed signals, 
whereas the application of Minimum Description Length 
principle (MDL) relaxes these assumptions and new 
measures of feedback may also be introduced [11]. 

Since all the measures mentioned above are linear, we 
extend our investigations by considering also nonlinear 
measures. Phase Synchronization present a different 
approach in analyzing the possible nonlinear 
interdependencies of the EEG signal and focuses on the 
phases of the signals. The idea of studying the phase 
relationships of two neurophysiological signals is not new 
[12], but later studies has shown that even if the amplitudes 
of two coupled chaotic oscillators remain uncorrelated, their 
phases may synchronize [13]. A robust phase coupling 
measure is the Phase Locking Value (PLV) [14]. Finally, 
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another group of synchronization measures are based on the 
assumption that neurons are highly nonlinear devices, which 
in some cases show chaotic behavior [15]. Hence, the use of 
nonlinear measures derived from studying chaotic dynamical 
systems may be of interest in neurophysiology applications. 
Such measures belong to the Generalized Synchronization 
concept and are based on analyzing the interdependence 
between the amplitudes of the signals in a state-space 
reconstructed domain. In this study, we use three variants of 
this idea, the S-estimator [20], a robust measure proposed by 
[21][22] and the synchronization likelihood method [23]. 

The focus of this study is on investigating the differences 
in coupling of EEG channels in controls-normals versus 
children with mild epilepsy. We compare the capabilities of 
the proposed measures using chaotic noisy models and we 
investigate their use in real band-limited signals. We also 
compare the capabilities of both linear and nonlinear 
measures in revealing the coupling between EEG channels. 

II. METHODS 

A. Test Signals & Real Data Acquisition 
To study the different properties of each of the proposed 

methods, we consider two classical coupled chaotic 
dynamical systems. The first model uses two coupled 
Rössler oscillators, whereas the second uses a Lorenz system 
nonlinearly driven by a Rössler oscillator with such coupling 
coefficient that ensures GS [26][27]. 

The studied population consisted of twenty mild epileptic 
subjects and twenty controls. The EEG signals in both 
groups (controls and mild epileptics) were recorded from 30 
cap electrodes (FP1, FP2, F7, F3, FZ, F4, F8, FT7, FC3, 
FCZ, FC4, FT8, T3, C3, CZ, C4, T4, TP7, CP3, CPZ, CP4, 
TP8, P3, PZ, P4, PO7, PO8, O1, OZ and O2), according to 
the 10/20 international system, referred to linked A1+A2 
electrodes. The signals were amplified using a set of Contact 
Precision Instrument amplifiers, filtered on-line with a band 
pass between 0.1 and 200 Hz, and digitized at 400 Hz. Off-
line, the recorded data were carefully reviewed for technical 
and biogenic artifacts, so that only artifact free epochs of 
eight seconds duration are investigated. The procedures used 
in the study had been previously approved by the University 
of Crete Institutional Review Board and all subjects signed a 
consent form after the nature of the procedures involved had 
been explained to them. 

B. Test Description 
Continuous EEGs were recorded in an electrically 

shielded, sound and light attenuated, room while participants 
sat in a reclined chair. EEG data were visually inspected for 
artifacts and epochs of 8 sec were chosen for analysis. We 
analyzed epochs at rest i.e., while each individual had the 
eyes fixed on a small point on the computer screen and 
during the two cognitive tasks. The first includes two digits 
number subtractions or two digits minus one digit, which is 

thought to be a relatively difficult mathematical task and the 
second consist of Fractal observation. Stimuli were 
presented on an LCD screen located in front of the 
participants. Vertical and horizontal eye movements and 
blinks were monitored through a bipolar montage from the 
supraorbital ridge and the lateral canthus. 

C. Mean Squared Coherence (MSC) 
Let us suppose we have two simultaneously measured 

discrete time series nx  and , n=1…N. The most 
commonly used linear synchronization method is the cross-
correlation function (Cxy) defined as: 
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where x and σx denote mean and variance, while τ is the 
time lag. MSC or simply coherence is the cross spectral 
density function Sxy, which is simply derived via the FFT of 
(1), normalized by their individual autospectral density 
functions. However, due to finite size of neural data one is 
able to actually estimate the true spectrum, known as 
periodogram, using smoothing techniques (e.g. Welch’s 
method). Thus, MSC is calculated as: 
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Where ⋅  indicates window averaging in the case of 
Welch’s method. The estimated MSC for a given frequency f 
ranges between 0 (no coupling) and 1 (maximum linear 
interdependence). 

D. Geweke feedback measure 
In [9] it is defined ( )fx y ω→ , a linear measure of feedback 
at frequency ω  from an arbitrary time series x  to another 
time series y . We note that x  and y are assumed to be 
wide-sense stationary and purely nondeterministic. The 
interested reader can find in [9] more details on this 
definition and on the relationship between ( )fx y ω→  and 
the MSC.  
Since the analysis of coupling between EEG channels is 
mainly performed in frequency bands that have a well-
known biomedical significance, we use the following 
formula for computing the coupling in [ ] [inf sup ]ω ω π, ⊆ − ,π :  

 [1
( ) ( ) d

2
sup

inf
x y x y y xF f f

ω

ω
]ω ω ω

π, → →
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We consider next the steps to be followed when evaluating 
the expression above. Given the measurements nx  and ny , 
we can resort to well-known algorithms for fitting a 
bivariate autoregressive model. The optimal model order p̂  
can be chosen from the pre-defined set { }p … pmin max, ,  by 

applying the MDL criterion lnˆ ˆargmin ln 4 Np pp N
⎡ ⎤= | |+Σ⎢ ⎥⎣ ⎦

, where 



 
 

 

ˆ pΣ  is the covariance matrix for the vector of residuals. The 

algorithm Whittle-Wiggins-Robinson (W R) 2 [16] has the 
advantage that the stability of the estimated AR model is 
guaranteed. In our experiments, we have used both the 
W R algorithm and the ARFIT algorithm 2 [17][29]. In our 
settings , and we observed experimentally that the 

results produced by W R and ARFIT for the same data set 
were similar in terms of the calculated coupling values. The 
integral in (3) can be computed with Monte Carlo methods. 
More precisely, we resorted to the use of the Matlab 
implementation for Sobol sequences available at 

50pmax=
2

[30], and 
the number of integration points for each frequency band 
was 100000. 

E. An MDL measure for inter-channel coupling 
The dependence between time series is recast to reflect the 
predictability of each of the two time series from the other, 
and the method can be applied for measuring the coupling 
between band-limited signals. We are interested on 
evaluating the coupling between x and , where y x  and  
are obtained after filtering 

y
x  and  with a bandpass filter 

whose frequency range is 
y

[ inf sup ]ω ω, . MDL principle 
claims the best model to be the one which leads to the 
shortest possible code length for the available 
measurements. In the hypothesis that  must be 
transmitted from an encoder to a decoder, we apply the 
following methodology based on the results from 
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 Second coding scenario: Assuming that the decoder has 
complete knowledge on the past and the present of x , the 
current value of  can be predicted as y
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The savings in code length of  due to the knowledge 

on
1
ny

1
nx  it is a measure of dependence between the two 

processes that it is grounded in the MDL principle. Based on 
this observation, we define 1 1( ) (1 1 1

t t tL Ly y y y )xx y t tμ − −= | − | ,→ , 

and similarly 1 1( ) ( 11 1
tt tL L )yx x x xy x t tμ − −= | − | ,→ . We further 

define the MDL coupling measure:  ( )x y x y y xμ μ μ= +, → → 2/ .

Solving the estimation problem in the first coding scenario is 
equivalent with estimating the coefficients of an AR model, 
and we apply the celebrated Levinson-Durbin algorithm 
[18]. In our implementation, the maximum prediction order 
depends on the frequency band, and it takes values between 
2 and 48. The second coding scenario relies on estimating 
the coefficients of an ARX model for which we employ the 

 Matlab function. arx

F. Phase Locking Value (PLV) 
One of the mostly used phase synchronization measures is 

the PLV approach. It assumes that two dynamic systems 
may have their phases synchronized even if their amplitudes 
are zero correlated [19]. The PS is defined as the locking of 
the phases associated to each signal, such as: 

 ( ) ( )x yn t m t constφ φ− =  (5) 

However, in this case the phase locking ratio of n:m=1:1, 
since both signals arise from the same physiological system 
(i.e., the brain). 

In order to estimate the instantaneous phase of our signal, 
we transform it using the Hilbert transform (HT), whereby 
the analytical signal H(t) is computed as: 

 ( ) ( ) ( )H t x t ix t= +  (6) 

where ( )x t  is the HT of x(t), defined as: 
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where PV denotes the Gauchy principal value. 
The analytical signal phase is defined as: 
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Therefore for the two signals x(t), y(t) of equal time length 



 
 

 

with instantaneous phases  respectively the 
PLV bivariate metric is defined given by: 
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where  is the sampling period and  is the sample 
number of each signal. PLV takes values within the [0,1] 
space, where 1 indicates perfect phase synchronization and 0 
indicates lack of synchronization. 

tΔ N

G. S-estimator 
An alternative measure for synchronization which can be 

applied in both bivariate and multivariate data is the S-
estimator [20]. First we perform PCA meaning that we 
eigendecompose the covariance matrix of the data: 

 { }T

FFR E F F L L= ⋅ = Λ T  (10) 

where  is a diagonal eigenvalue matrix and Λ L is the 
corresponding eigenvector matrix. From the diagonal 
elements λι of the eigenvalue matrix Λ we compute the 
normalized eigenvalues iλ′  as follows: 
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From the Κ normalized eigenvalues we compute the S-
estimator: 
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We can see from (12) that when all eigenvalues are equal to 
1/K then S become zero, whereas if only one strong 
eigenvelue exist then S becomes maximum and equal to 1. 
The number of eigenvalues indicates the number of 
uncorrelated signals within data matrix F. In brief, when the 
EEG channels are combinations of many uncorrelated 
signals no synchronization exists. On the contrary when we 
have small number of uncorrelated signals all brain sources 
are synchronized according to these signals. 

H. Robust state-space GS method (RSS-GS) 
Alternatively, one may measure how neighborhoods (i.e., 

recurrences) in one attractor maps into the other. This idea 
turned out to be the most robust and reliable way of 
assessing the extent of GS [21][22]. First, we reconstruct 
delay vectors [23] out of our time series; xn=(xn,…,xn-(m-1)τ) 
and yn=(yn,…,yn-(m-1)τ), where n=1…N, and m, τ are the 
embedding dimension and time lag, respectively. Let rn,j and 
sn,j, j=1,…,k, denote the time indices of the k nearest 
neighbors of xn and yn, respectively. For each xn the squared 
mean Euclidean distance to its k neighbors is defined as: 
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And the Y-conditioned squared mean Euclidean distance 

( ) (k
nR X Y )  is defined by replacing the nearest neighbors by 

the equal time partners of the closest neighbors of yn. 
If the set of reconstructed vectors (point cloud xn) has an 

average squared radius ( 1)
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correlated, while ( ) ( )( ) ( ) (k k
n nR X Y R X R X≈ )  if they are 

independent. Hence, an interdependence measure is defined 
as [21]: 
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Since ( ) ( )( ) (k k
n nR X Y R X )  by construction, it is clear that 

S ranges between 0 (indicating independence) and 1 
(indicating maximum synchronization). Another normalized 
and more robust version of S maybe defined as [22] and is 
the one actually used in this study: 
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I. Synchronization Likelihood (SL) 
Finally, the last measure (SL) used is an unbiased 

normalized synchronization estimator, closely related to the 
previous idea and to represent a normalized version of 
mutual information [24].  

Supposing that xn, xv and yn, yv be the time delay vectors, 
SL actually expresses the chance that if the distance between 
xn and xv is very small, the distance between the 
corresponding vectors yn and yv in the state space will also 
be very small. For this, we need a small critical distance εx, 
such that when the distance between xn and xv is smaller than 
εx, x will be considered to be in the same state at times n and 
v. εx is chosen such that the likelihood of two randomly 
chosen vectors from x (or y) will be closer than εx (or εy) 
equals a small fixed number pref. pref is the same for x and y, 
but εx need not be equal to εy. Now SL between x and y at 
time n is defined as follows: 
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Here, N’=2(w2-w1-1)Pref , ⋅  is the Euclidean distance and θ 
is the Heaviside step function, θ(x)=0 if x≤0 and θ(x)=1 
otherwise. The value of w1 is window equal to the Theiler 
correction for autocorrelation effects and w2 is a window 
that sharpens the time resolution of the synchronization 
measure and is chosen such that w1<<w2<<N [25]. When 
no synchronization exists between x and y, SLn will be equal 
to the likelihood that random vectors yn and yv are closer 
than εy; thus SLn=pref. In the case of complete 
synchronization SLn=1. Intermediate coupling is reflected by 
pref< SLn <1. Finally, SL is defined as the time average of 
the SLn values.  

In the present study, SL was computed with the following 



 
 

 

parameter settings: τ=10; m=10; w1=100 samples; w2=400 
samples; pref=0.05. 

III. RESULTS 

A. Testing using artificially generated data using chaotic 
oscillators under variable noise 

To demonstrate that the nonlinear synchronization 
methods addressed in this study are sensitive to nonlinear 
structures in the signals under investigation we consider two 
classical coupled chaotic dynamical systems. The first model 
uses two coupled Rössler oscillators [26], whereas the 
second uses a Lorenz system [27] nonlinearly driven by a 
Rössler oscillator with coupling coefficient that ensures GS. 
The synchronization indexes vs. additive noise are plotted in 
the following figures. 

 
Fig. 1: Synchronization indexes applied on two coupled Rössler oscillators, 
configured to have phase synchronization. 

 
Fig. 2: Synchronization indexes applied on a Lorenz system nonlinearly 
driven by a Rössler oscillator. The coupling coefficient used is set for 
general synchronization. 
 

B. Nonlinear coupling detection ability: Testing using 
surrogates 

To demonstrate that the synchronization methods 
addressed in this study are sensitive to nonlinear structures 
in the real EEG signals (and thus reliable) under 
investigation bivariate surrogate data testing was used. The 
surrogating procedure used preserves both the 
autocorrelation of the signal and their linear cross-
correlation, but the nonlinear individual structure of the 
individual signals, as well as their nonlinear 
interdependence, if any, is destroyed [28]. One mild-
epileptic and one normal signal of a single representative 
subject was selected to be the generator of the surrogates 

and the testing was performed focusing on channels O2 and 
PO8 located on the occipital-parietal brain lobe. To reject 
the hypothesis (H0) that the mean values of the original and 
the set of surrogate time series are equal different the Z-
score is calculated. H0 is rejected at the 95% level of 
confidence if Z>1.96 (one-sided test). The results obtained 
are tabulated below. Bold values are the ones capable of 
identifying the nonlinearities of the signal. 

C. Actual EEG data 

TABLE I 
SYNCHRONIZATION Z-SCORES (ORIGINAL VS. SURROGATE DATASETS) 
Linear (Alpha1 band, 8-10 Hz) Nonlinear 

Method Z-score Method Z-score 
COHERENCE 0.50 PLV 3.85 

GEWEKE 0.11 S-estimator 0.25 
MDL 0.51 SL 1.09 

  RSS-GL 1.32 

Testing using surrogates suggested that further testing on 
the real data is prospective using only the linear and the PLV 
method, as discussed in the next section. The latter 
synchronization measures are performed on both normals 
and mild-epileptic band-filtered data. Averages over all 
possible channel couplings in each brain lobe and band are 
calculated (Table II). Only those bands/lobes that achieved 
significant differentiation using ANOVA (p=0.05) statistics 

are tabulated. α1, α2, β and γ2 denote alpha1 (8-10 Hz), 
alpha2 (10-13 Hz), Beta (13-30 Hz) and Gamma2 (40-90 
Hz) bands, respectively. The identified lobes are: OPR (O2-
P4, O2-PO8, P4-P8), OPL (O1-P3, O1-PO7, PO7-P3) and 
CPL (C3-CP3, CP3-P3, P3-PO7), TL (FT7-T3, T3-TP7, 
FT7-TP7), FL (FP1-F7, FP1-F3, F7-F3), while N>E denotes 
that synchronization in normals was greater than in 
epileptics. 

IV. DISCUSSION 
The PLV method applied on phase synchronized 

oscillators obviously was the one performed better (Fig.1). 
SL and RSS-GL estimators were also able to identify the 
coupling, but underestimated it. S-estimator could not 
identify any PS. However on the second paradigm using the 
generally synchronized oscillators, all methods were able to 
perform well, except the PLV as expected (Fig. 2). SL and 
RSS-GL were the best, but S-estimator was very stable and 

TABLE II 
ACTUAL EEG DATA: LOBE-BAND SELECTION 

Method Test1 Test2 Test3 
COHERENCE α1: OPR(N>E) - - 

GEWEKE - - γ2: FL(N<E) 

MDL - - 
β: ΟPR(N>E) 

γ2: OPR(N>E) 

γ2: TL(N>E) 

PLV - - 
γ2: CPL(N>E) 

γ2: OPL(N>E) 

γ2: OPR(N>E) 



 
 

 

robust even in a really noisy environment. SL and RSS-GL 
difference responses are due to normalization factors and do 
not imply that one outperforms the other. As a conclusion in 
a real case scenario one should use both a PS measure (i.e., 
PLV) and one of the proposed GS measures (preferably RSS-
GS or SL), as well as linear tools since their underlined 
assumptions are different. 

The testing using surrogate datasets testifies that there is 
strong statistical evidence that the interdependence in the 
real EEG data can be described by a linear model, but it is 
also evident that there also exists nonlinear coupling 
apparent in PS measures (PLV) only. In other words, since 
all GS methods were unable to discriminate the actual EEG 
from the surrogates (linear representations), lead to the 
conclusion that either the actual EEG does not contain 
strong nonlinear GS couplings or the measure used is not 
strong enough to detect them. But since we tested them on 
nonlinear models we conclude that the first assumption is 
right. However, PLV was able to detect differences. Hence, 
we used PLV and the linear methods proposed on the real 
EEG data. 

The results indicated that the PLV method accentuates 
gamma2 reactivity on the central and occipital brain lobes 
during the Fractal simulation test. Linear synchronization 
estimators even if they identify some additional significant 
brain regions, they mostly support activations around the 
occipital regions in gamma2 band. Such an increase in 
gamma band activity [33] is also found during observation 
of figures with illusory contours, and this finding was 
interpreted as an evidence of a bottom-up binding of 
coherent visual features [31]. At the same time, there is 
evidence that gamma band oscillations subserve the 
modulation of visual processes by the perceiver’s internal 
representations and cognitive context, in a top-down 
approach [32].  
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