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Abstract—This paper is concerned with the detection of line interference and interferences from other physiological
QRS complexes in an electrocardiogram (ECG) waveform. The sources [25]. Bandpass filtering is typically used to attenuate
precision in the identification of QRS complexes is of great o frequencies related to the above noise sources which lie

importance for the reliability of an automated ECG analyzing . .
system and thus, for the diagnosis of cardiac diseases. Many outside the frequency band occupied by the QRS complex. In

algorithms have been developed during the last thirty years, OUr approach, the resulted filtered QRS complex is smoothed
each of which has different strengths and weaknesses. In the by considering its Poisson transform. Afterwards a threshold
proposed algorithm a threshold is set and the crossing points is set and from each couple of the points produced by the
between it and the QRS complexes are determined. This has jniersection of the threshold line with the ECG signal, the

the advantage of ensuring that the R-peaks are contained dina R Ki - d h idpoint. Th .
between the crossing points provided that these are determined corresponding R-peak is estimated as the midpoint. The main

accurately. The use of Poisson techniques coupled with Root idea, behind the novel steps introduced at this point, is
Moments theory enables us to map this part of the problem that the unit circle can be seen as the z-transform of the
into a problem of estimating the zeros of a polynomial that lie threshold line which has been shifted to meet the x-axis.
on the circumference of the unit circle. This locator polynomial Thus, the zero-crossings can be identified from the location

h d | to twice the total ber of peaks withi . Lo .
aaja?: kﬁgcf -?-ﬂ:arogtsvgf ?he ?OC(;&%%T;nirm?alp;r%diggtmg of the zeros in the unit circle. The identification of the zero-

bounds on the R-peaks mentioned above. The effectiveness ofCrossings leads to the estimation of the R-peaks. This idea
the proposed algorithm is tested by using recordings obtained is implemented through the use of relationships taken from
from the MIT-BIH arrythmia database. the Poisson Transform and Root Moments theory.
The strength of the proposed algorithm lies on the fact that
l. INTRODUCTION the location of the R-peaks is bounded from above and below
The detection of the R-peaks and consequently of thgy the location of the cross-over points, hence none of the
QRS complexes in an ECG signal provides informatiompeaks can be ignored.
on the heart rate, the conduction velocity, the condition oA set of recordings from the MIT-BIH arrythmia database
tissues within the heart as well as various other abnormaliti¢®6] is used to measure the accuracy of the algorithm and
and, thus, it supplies evidence to support the diagnoses itf reliability is evident by the results obtained.
cardiac diseases. For this reason, it has attracted consideraliés paper is structured as follows:
attention over the last three decades. In Section Il, the Poisson Integral Transform is presented
The algorithms in the relevant bibliography adapt a rangfr the case of a real, causal and stable sequence. Then,
of different approaches to yield a procedure leading tthe concept of the Poisson P kernel is introduced so as
the identification of the waves under consideration. Thedbe Poisson P Transform to be seen as the result of a
approaches are mainly based on derivative-based techniqeesvolution. This section also presents in a very compact
[1]3], classicaldigital filtering [4]-[9], adaptive filtering way important aspects related to the Root moments theory.
[10], [11], wavelets [12]-[15], neural networks [16], [17], A set of important relationships which will be used in the
hidden Markov models [18], mathematical morphology [19]implementation of the proposed algorithm is given.
genetic algorithms [20], Hilbert Transform [21], [22], syn-Section lll, deals with the main core of the paper and is fo-
tactic methods [23], maximum a posteriory estimation [24¢used on describing the steps consisting of the preprocessing
and zero-crossing-based identification techniques [25].  stage dealing with feature extraction and the decision making
In the non-syntactic algorithm presented here, the high accstage involved in the R-peak detection. The evaluation of the
racy achieved in detecting QRS complexes is accompaniperformance of the proposed algorithm is dealt in Section IV.
with robustpes_s and low computational qomplexity. Il. FUNDAMENTAL RELATIONSHIPS
At the beginning of the proposed algorithm, the enhance- ] i ]
ment of the QRS part of the ECG is achieved by thé: Poisson Transform Relationships
reduction of the level of the P and T waves, followed by Let us assume a causal sequeri¢el, that is, f[n] =0
suppression of some noticeable disturbances in the sigr% 1< 0, wheren € Z. As known, thez-transform of the above
. . . _ guence is defined as the power series
These disturbances result mainly due to baseline drift, power
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given by The logarithm of the magnitude as well as the phase of
F(e!®) are given respectively from the following equations

. 1 (7 .
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Fre®) =5 [ FRIPR(0-pyds, @ | . & o
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wherere!®, Ré* are the polar forms of two points on the z- mer M m
plane, lying on concentric positively oriented circles centered
at the origin with radiir, R correspondinglyr(> R > 1) and . © o o
Prr (@) symbolizes the Poisson P Kernel given by LF(E9) =—mno+ Y ( T r’nm)sin(ma)). (12)
r2—R2 m=1
Prr(w) = R 1172 2Rrcosw’ (3)  From (11) and (12) the following equations are obtained,
By assuming the unit circleR= 1) and using (2), the  on M7 [[F(el?))
following log-magnitude relationship is obtained S+ S = T .Lﬂln Ky cosmo)do, — (13)
) 1 (7 )
joy .~ Ju _
n[Fel®) = o [ n[FE"P(-pde, @)

o cPou — T/” oo+ ZF ()] sinmo)do  (14)
which can be written as nSem
, 1 , [28], [29]. The above relationships provide the tools for

In|F(re!®)| = = In|F ()] + Py (). ()  estimating the roots of a polynomial which lie on the cir-

The smoothingproperty of the Poisson P kernel, highlightedCUTerence of a unit circle and are going to be implemented

in [27], justifies the use of the above equation in thd" the developed algorithm.

algorithm under consideration. I1l. ALGORITHM FOR DETECTING THE R-PEAKS
B. Root Moments Relationships The focus of the proposed algorithm is to identify the
Consider an nth degree polynomial crossing points after the appropriate threshold cutting the

. S QRS complexes, is chosen. The implementation of this target
F(2) =2+ piZ" "+ poz" "+ ..+, ®)  is achieved through the following steps indicated in the block
with roots {ri}, for i = 1,---.n, where {p} is a set of diagram of the proposed detector presented in Fig. 1.
coefficients characterizing the above polynomial. Then, that the beginning, the intention is focused on the isolation of
(first order) root moments of (z), denoted here by, is  the QRS complexes. As known, the frequency content of P
given by and T waves is in the range of 0.5 Hz to 10 Hz, the base
n line and motion artifacts have a power spectra of 0.5 Hz to
—ym m m__ m
So= 1415+t = i;r' ’ ) 7Hz [30] and the power line interference occupies 50 Hz to
where m is an integer. At this stage we present som 60 Hz [31]. The QRS complex spectra may have frequency

relationships involving the root moments which are to bgompone_nts of up to 40 Hz [1]. In order to attenuate the
used later in the development of the proposed a|gorithnﬁr_equenC|es characterizing the different types of noise as well

F(2) can be represented as a product of as the frequencies occupied by the P and T waves, a bandpass
n n filter is used and the cutoff frequencies are set at 18 and
F(2) = Klr!(l—aiz’l)‘rl(l—ﬁizfl), (8) 35 Hz. For illustration, a portion of the resulted normalized
= = bandpass filtered ECG signal is presented in Fig. 2(b). The
=K-Fin(2) - Fout(2). next step is to assume the conversion of the above filtered

where K is a real constantg; < |z] (Vi =1,---,n;) and ECG signal to a representation which can be considered as
Bi > |7 (Vi =1,---,ny) are respectively the roots df(z) a time signal that imitates a frequency magnitude response.

inside and outside a circle having a radius [of and . This conversion is necessary since the magnitude response

andny are correspondingly the number of zeros inside an ; : : :
outside the above circlae ny 4 np). g an even and continuous function with the first order

Taking the logarithm of (8) and expanding the term througgerivatives at 0 anda equal to zero [28]. In order to ensure

the use of Laurent Series, it is possible to show that, that the above conditions are satisfied, the signal is buffered
. . Fou at both ends, time-reversed and its absolute value is taken.

In[F ()] =InKy —nlnz— 5 (S% My mzm> . (9) Evidently, the obtainedhodifiedECG signal (Fig. 3(a)), will
m=1 m have double the number of R-peaks contained in the raw

denoted bySi" and the root momentS_p, of the maximum With respect to the axis defined by the end of the buffering.
phase factor represented @}l# can be calculated through The modifiedECG Signal is then convolved with the Poisson

the use of (7) an&; is a constant. Evaluating [[R(2)]|,_.j» P kernel. By settingr — 1, the resulted signal becomes

yields smoother and thus the QRS complexes become broader
In[F (6/°)] = InK1 — npj although the location of their p_e_aks is not affe_cted. _
o o Fou Once the abovemoothed modifie€ECG signal is obtained
-3 (TN g-imo | 2-m gjmoy 10) (Fig. 3(b)), a threshold is then set and the crossing points
=L m between it and the QRS complexes under consideration are
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whereel® symbolizes the i-th zero on the unit circle akd
is an even number, representing the total number of zeros.

e omensot Sincer — 1, |[F(rel®)| can approximate faithfully the mag-
lo@) nitude responsgF (e/?)|. The transition fromF (e/?)] to the
59 locator polynomialg(e/®)| which defines the location of the
. 05 zero crossings can be realized by using aspects adopted from
®‘7 the Root Moments theory, through a technique described in
sg details in [32].
Esimaon e The procedurg leading to th_e est.imation of the mid po_int
™) from each pair of zero crossings is based on the following
observations.
jace™) If ¢;,¢i.1 denote the location on the unit circle of two zeros
Computation of fie belonging to the same neighborhood ad denotes the
m‘"‘Tg?;;;"f"' location on the unit circle of their midpoint,
l o =20 (16)
R-Peak

detection

we have approximately,
Fig. 1. Block diagram of the Detector (17 ej¢i e_j“’)(l— ejzpiﬂe—jw) ~ (17 ejq), e—jw)z' (17)

Let |§(e/®)| be the locator polynomial which locates the

determined. This has the advantage of ensuring that the Resition of the mid pomts. Evidently,

peaks are contained between the crossing points provided

that these are defined accurately. From each couple of the er )| = |‘!| _eltg Jw | \g(elw)| (18)
points produced by the intersection of the threshold line with

the QRS complex, the middle point corresponding to thgnd using (13) the following equation is obtained,

relevant R-peak should be estimated.

Through shifting thesmoothed modifie@CG signal on the f=29=9 = % (19)
y-axis, by the height of the threshold (Fig. 4(a)), the cutting

points obtained from the intersection of the threshold with Thus, by calculating the root moments @f(el®)|, the

the signal can be seen as zero-crossings. The magnitudeegtimation of the root moments of the locator polynomial
the shifted smoothed modifiesignal, denoted byF (rel®)|  |G(e/®)| can be achieved.

and considered as tHimal preprocessedignal is presented By computing the root moments dfi(e!®)| and using the

in Fig. 4(b). results obtained from (10), the corresponding coefficients
The final aim is the estimation of the middle point for eactfan be estimated. The magnitude responsg(ef® (refer
pair of zero crossings. The identification of the zero crossind® Fig. 5(a)) can be obtained from the above coefficients.
can be achieved by mapping this problem into the problerhh€ minimum points of the resulted magnitude response
of estimating the zeros on the unit circle of the polynomiaforrespond to the detection of the R-peaks (Fig. 5(b)).

|F(el®)], i.e. by defining a polynomiaig(e!®)| given by IV RESULTS AND DISCUSSION

' K ' _ The accuracy of the algorithm was tested by applying
lg(e'?)| = |‘||(1—e’¢ie*“*’)|, (15) it to all the records obtained from the MIT-BIH arrythmia
i= database [26]. The above database contains 48 records and
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Fig. 3. Record 100: (a) Modified ECG (b) Smoothed modified ECg ©Stimated peaks

of the algorithm is 99.64 % and its Positive Predictivity is
< 2 99.73 %. Most of the FN and FP QRS complexes were found
@% in records 104, 203 and 207. The ECG waveforms in the
= above records are characterized by high complexity which
‘ ‘ leads to intrinsic difficulties in detecting the QRS complexes.
0 %0 0o w00 2ed 20 0 w0 There are also some other records like 108, 200, 201, where
. because of they inherent too much noise the application of
wl : : : : ‘gﬁi the present algorithm gave fairly good but not perfect resullts.
0al / T Fig. 6 and Fig. 7 present part of the records 203 and 108
: respectively. In spite of the baseline drift and the complex
form of the ECG which is evident in the relevant figures, the
‘ proposed algorithm performed quite well.
3500 4000 For the case of the very noisy records 105 and 108, com-
parisons between the performance of the proposed algorithm
Fig. 4. Record 100: (a) Shifted smoothed modified signal (b) Magnitudand that of a selection of very well known algorithms can
of the shifted smoothed modified signal be made by looking at Table Il. More specifically,

« For the record 105, both the +P and the Se achieved

each of them is about 30 minutes long. The ECG signals are ‘1’_V;]th the uge of Oll” al'?.ogthm reachf Yhery h|g:1 |e}/e|3-]c
sampled at 360 Hz. The algorithm was implemented through |sf_|recor WZS C;‘SS' ied as one of the most noisy o
the use of MATLAB. e Tiles considerea.

To assess the performance two statistical measurements weré For the record 1.08’ the +P as W.e” as the Se correspoqd-
ing to the algorithm presented in this paper also obtain

used [33]. These are the Sensitivity (Se), which gives the . . . .
fraction of real events that are correctly detected and it is very hlgh_values. Record 108 IS characterized by high
noise which makes the detection of QRS complexes

(b)
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defined by, very difficult.
Se— TP (20)  The effort for possible improvements in the algorithm should
TP+FN’ be directed towards more effective filtering in the preprocess-
and the Positive Predictivity (+P) which is the fraction ofing stage as well as better threshold adjustment. In this way,
detections that are real events and it is defined by, there is a good chance of achieving even higher detection
P rates.
+P= TPLFP’ (21) Both the robustness of the algorithm (is not too sensitive

in the parameters) and the speed of the detection (low

where FN (False Negatives) denotes the number of missggmplexity of the algorithm and hence low computational
detections, FP (False Positives) represents the number@éd) can be characterized as very satisfactory.

extra detections and TP (True Positives) is the number of

the correctly detected QRS complexes. V. CONCLUSION
Ther parameter of the Poisson P transform was adjusted to A new algorithm is presented for the detection of the QRS
be close to 1 for the testing of these records. complexes in an ECG signal. This algorithm is based on the

Table | shows the results of the algorithm for all the recorddetermination of the crossing points between the ECG wave-
of the MIT-BIH arrythmia database. The average Sensitivitjorm and the threshold, by using the Poisson P transform and



TABLE |

PERFORMANCE OF THEALGORITHM

Record No. TP FN FP | Se(%) | P(%)
100 2273 0 0 100.00 | 100.00
101 1863 2 7 99.89 | 99.63
102 2187 0 0 100.00 | 100.00
103 2084 0 0 100.00 | 100.00
104 2195 34 41 98.47 98.17
105 2556 16 4 99.38 | 99.84
106 2014 13 4 99.36 | 99.80
107 2137 0 0 100.00 | 100.00
108 1751 23 16 98.70 | 99.09
109 2529 3 4 99.88 | 99.84
111 2124 0 0 100.00 | 100.00
112 2539 0 0 100.00 | 100.00
113 1795 0 0 100.00 | 100.00
114 1876 3 0 99.84 | 100.00
115 1951 2 0 99.90 | 100.00
116 2395 17 0 99.30 | 100.00
117 1535 0 0 100.00 | 100.00
118 2286 2 0 99.91 | 100.00
119 1987 0 0 100.00 | 100.00
121 1859 4 0 99.79 | 100.00
122 2476 0 0 100.00 | 100.00
123 1518 0 0 100.00 | 100.00
124 1618 1 0 99.94 | 100.00
200 2597 4 4 99.85 | 99.85
201 1985 15 4 99.25 | 99.80
202 2131 5 0 99.77 | 100.00
203 2908 72 61 97.58 | 97.95
205 2647 9 16 99.66 | 99.40
207 2249 83 | 112 | 96.44 | 95.26
208 2926 29 5 99.02 | 99.83
209 3003 2 0 99.93 | 100.00
210 2631 19 5 99.28 | 99.81
212 2747 1 0 99.96 | 100.00
213 3246 5 1 99.85 | 99.97
214 2247 15 0 99.34 | 100.00
215 3361 2 0 99.94 | 100.00
217 2206 2 0 99.91 | 100.00
219 2284 3 0 99.87 | 100.00
220 2048 0 0 100.00 | 100.00
221 2424 3 0 99.88 | 100.00
222 2477 6 3 99.76 | 99.88
223 2602 3 0 99.88 | 100.00
228 2048 5 22 99.76 | 98.94
230 2256 0 2 100.00 | 99.91
231 1571 2 0 99.87 | 100.00
232 1775 5 6 99.72 | 99.66
233 3060 19 0 99.38 | 100.00
234 2749 4 0 99.85 | 100.00

Total 109321 | 420 | 312 | 99.64 | 99.73
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Fig. 7. Record 108: (a) Raw ECG Signal (b) Estimated R-peak locations

the root moments theory. This approach has the advantage of
ensuring that the R-peaks are contained between the crossing
points when these are determined accurately. The algorithm
is evaluated for a number of records obtained from the MIT-
BIH Arrythmia database. The accuracy of the new algorithm
in detecting the QRS complexes is very high due to the
criteria used (average Sensitivity of 99.64 % and average
Positive Predictivity of 99.73 %).

TABLE Il
COMPARISON OF THEPERFORMANCE

Recordings

Algorithms 105 108
Se(%) P(%) Se(%) P(%
Proposed Algorithm 99.38 99.84 98.70 99.09
Zero Crossing Counts [34] 99.49 98.71 98.24 97.8%
Pan-Tompkins [35] 99.15 97.46 98.77 89.8
Hamilton-Tompkins [36] | 99.15 97.97 97.39 97.2%
Fuzzy reasoning [37] 99.33 97.97 99.01 98.61
Filter Bank [1] 99.26 9758 96.28 92.17
Genetic Algorithm [20] 99.81 96.76 98.58 92.4
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