
 
 

 

  

Abstract— The extraction of the foetal electrocardiogram 
(FECG) from skin electrode signals recorded from mother 
body is a problem of concern to signal processing, and blind 
signal processing (BSS) is a fundamental method for solving 
this problem. Most proposed BSS techniques for separation of 
foetal electrocardiogram (FECG) and mother 
electrocardiogram (MECG) rely on independence of these 
signals. This paper introduces a novel technique for cases that 
signals are correlated with each other, i.e. considering a real 
assumption. The method uses Wold decomposition principle for 
extracting desired and proper information from the predictable 
part of the measured data, and exploits approaches based on 
second-order statistics to estimate the mixing matrix and 
source signals. Simulation results are provided to illustrate the 
effectiveness of the method. 

I. INTRODUCTION 
oetal electrocardiogram (FECG) extraction is an 
interesting problem in biomedical engineering which 
arises when the foetus’s heart condition is desired to be 

monitored. It usually involves measurements from 
electrodes (sensors) attached to different points of the 
mother’s skin. These electrodes pick up mixtures of foetal 
electrocardiogram (FECG) and mother electrocardiogram 
(MECG). The separation of FECG and MECG from these 
mixtures may be modeled as a blind source separation (BSS) 
problem [1],[2]. 

Blind source separation consists of recovering signals 
from several measured noisy mixtures of them. The problem 
is called “blind” because no information is available about 
the mixture, i.e. recovering of source signals is achieved 
without the knowledge of the characteristics of the 
transmission channel (mother’s body). The lack of prior 
information can be compensated by considering particular 
source statistics assumptions. The most popular condition 
used by BSS techniques is the statistically strong assumption 
of independence between the source signals. Therefore the 
goal in these techniques is to achieve a separation process 
that  produces outputs as independent as possible [3],[4]. A 
less stringent condition is uncorrelation of sources. These 
techniques exploit temporal correlation of each source signal 
(second-order blind identification), and use a joint 
diagonalization method of several correlation matrices 
[5],[6]. 

In this paper, the aim is to propose a solution to FECG 
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extraction problem using BSS method considering 
correlated signals which is a real assumption between FECG 
and MECG signals. This paper is organized as follows:  In 
section 2, the problem of BSS is stated. Proposed pre-
separation procedure is introduced in section 3. Section 4 
expresses BSS algorithm, and simulation results are 
presented in section 5. Concluding remarks are given in 
section 6.  

II. BSS PROBLEM  FORMULATION  

Assume that d signals  )(),...,(1 tdt ss  are transmitted from 
d sources at different locations. What we receive at m 
sensors will be instantaneous linear combinations of these 
signals that construct measured data: 

(1)         s.  s. )()()()( dd11 tttt naax ++…+=  
Thus the model is as follows: 

(2)                 . )()()()()( ttttt n sAnyx +=+=  

where 1
)(

×ℜ∈
m

tx  is the measured data vector from  m  

sensors, 1
)(

×ℜ∈
d

ts  is the signal vector, composed of  d  

unknown source signals, dm×ℜ∈=  d , ... ,1 ][ aaA  
characterizes the unknown channel and is referred to as  
“mixing  matrix”,  1

)(
×ℜ∈

m
tn is the additive noise vector at 

the sensor array. 
The aim of blind source separation (BSS) is to identify the 

mixing matrix A  and consequently recovering the source 
signals from the measurements. 
  

III. PRE-SEPARATION PROCEDURE  
If main step in our approach for correlated sources is a 

pre-separation process. The measured data is decomposed 
into regular and predictable components, using Wold 
decomposition. In the predictable component, the 
combination of uncorrelated contributions of source signals 
is identified on whose basis A  and consequently the source 
signals are estimated using second order Equation). 

A. Wold Decomposition 
An arbitrary process  can be written as a sum: 

    )(p)(r)( (4)                                         ttt sss +=  

where )(r ts  and )(p ts  are regular and predictable processes. 

This expansion is called Wold decomposition. In [7] it has 
been proved that the processes )(r ts  and )(p ts  are 
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orthogonal. Furthermore, )(p ts  is comprised of complex 

exponentials:  
(5)                  ).exp(j i

i
i0)(p ts t ω∑+= cc  

where ic ’s are orthogonal zero-mean random variables. 

Hence, )(p ts  has a line spectrum: 

(6)                       )(  2)( ii
i

p
ωωδπαω −= ∑sP  

but )(r ts  has a smooth spectrum. 

B. Measurements Decomposition 
In this subsection a method is proposed for extracting and 

decomposing some information from the regular and 
predictable parts of the measured data. For simplicity, a 
special case of model (2) with d=2 , m=2 is considered, that 
can be extended to general cases. So, we have the following 
model satisfying conditions expressed in section2: 
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where )(1 ts  and )(2 ts  are the source signals A  is the 
mixing matrix. 

    Regular and predictable parts of source signal are 
indicated by  )(ir ts  and )(ip ts  ( 2,1=i ): 

(8)                                )(ir)(ip)(i ttt sss +=  

where, 
 (9)                        )exp(j. 1k

k
k)(1p ts t ω∑= a  

 (10)                        )exp(j. 2)(2p ts l
l

lt ω∑= b  

in which { ka } and { lb } are sets of orthogonal random 

variables, and { 1ω } and{ 2ω } are proper frequency sets. 
Also, since source signals are assumed jointly  stationary, 

ka  and lb  corresponding to   21k lωω ≠ are orthogonal. 
    Using (7),(8) and the fact that regular and predictable 

parts in each signal are orthogonal ,we get: 
(11)            ;     1,2i )(i)(ir)(ip)(i =++= tttt nxxx  

where, 
(12)             1,2i   ;        )(2pi)(1pi)(ip =+= ttt ssx βα  

From (9),(10),(12) obtains: 
(13)    )exp(j.                1,2i   ;q

q
iq)(ip =∑= tx t ωd  

where { iqd } are orthogonal random variables and 

{ } { } { }21q ωωω U= . 

From these equations, each measured signal has regular 
and predictable components, each corresponding to the 
combination of individual regular and predictable parts of 
source signals. A spectral method for separating these parts 
follows. The correlation functions of the measured data  are 
given by: (i,j = 1,2) 

(14)              )(.N)(r)(r)(r 0
x

ijp
x

ijr
x

ij τδτττ ++=  

where 0N  is the noise variance and )(r x
ijr τ  and )(r x

ijp τ  

are correlation functions of regular and predictable parts: 
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Hence power spectral density(psd) and cross spectral 
density(csd) functions of measurements have the forms: 

(17)          N)()()( 0
x

ijp
x

ijr
x

ij ++= ωωω PPP  

where, 
(18)   )(}..E{2)( q

q
jqiq

x
ijp ωωδπω −= ∑ ∗ddP  

As expected, the spectra of the predictable parts are pure 
impulsive. So, it is possible to detect and separate these 
components in the measured spectra. Consequently, 
correlation functions ( )(r x

ijp τ ) of the predictable parts are 

obtained that will be used next. 
C. Extracting Desired Information from predictable parts 
Rewriting predictable parts of source signals (9)-(10), 

considering { nΩ } as the common frequency set, we obtain: 
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where, 
1) Random variables ka  and lb  corresponding to 

  21k lωω ≠  are orthogonal. 

2) Correlation of predictable signals  )(1p ts  and )(2p ts  

arises from correlation of random variables na  and nb  

corresponding to { nΩ } (common frequency components of 
source signals). 

3) Removing common frequency components of source 
signals from )(1p ts  and )(2p ts  result in two residue 

signals, )(1p
~ ts  and  )(2p

~
ts , that are uncorrelated:  
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and relation (18) can be rewritten as: 
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(24)    )Ω(}..E{2          n
n
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Removing the terms corresponding to common frequency 
components results: 

(25)    )(}..E{2)(~
q

nq
jqiq

x
ijp ωωδπω −= ∑

≠

∗ddP  

from which the desired correlation functions are obtained: 
(for  i = 1,2 ) 
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x
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 At last, because  )(1p
~ ts  and )(2p

~
ts , are uncorrelated, we 

get the following matrix form: 
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(27)                                  ).(~. s
p

HARA τ=  

where H  denotes complex conjugate transpose, and 
(28)            ;   }~~E{ )(r~ 1,2i)(ip)(ip

s
iip =

∗
+= tt ss ττ  

It is seen that in (27) the matrix which is related to source 
signals is diagonal (a desired condition). This representation 
is the basis of an algorithm for estimating mixing matrix A . 

IV. BLIND SOURCE  SEPARATION  ALGORITHM 

In this section, an algorithm for estimating A (and 
recovering source signals) is proposed which is based on the 
model embedded in eq.(23) and restated in (29) using 
second order statistics.  

(29)   ~ ~~
                        1,2i  ;        )(2pi)(1pi)(ip =+= ttt ssx βα  

Steps of the algorithm are following:  
 
A.  Ortogonalization  
Although )(1p

~ ts  and )(2p
~

ts  are uncorrelated and based 

on the discussion in section 2, we can assume that:  
(30)                                                )0(~ s

p IR =  

according to eq. (29),  ~  &  ~
)(2p)(1p tt xx  are correlated. 

Hence, we apply an orthogonalization transformation on 
 ~  &  ~

)(2p)(1p tt xx . The orthogonalizer matrix is obtained 

from eigendecomposition of matrix )(~ x
p τR  at 0=τ . If 

eigenvalues of )0(~ x
pR  are denoted by  λ &λ 21  and 

2& vv1  are the corresponding eigenvectors, the 
orthogonalization matrix T , defined by: 

(31)                              ]
λ
1  , 

λ
1[ 2

21

HvvT 1=  

satisfies: 
 (32)                                         ).0(~. x

p ITRT =H  
Also from (27),(30),(32), it is seen that : 

    (33)        ....).0(~.. s
p ITAATTARAT == HHHH  

This equation shows that matrix ATU .= , is a unitary 
matrix. As a consequence mixing matrix A  can be factored 
as: 

(34)                                                .1 UTA −=  
 
B.  Estimation of  U              
         
By applying orthogonalization matrix T  to equation (27) 

for some 0≠τ , 

(35)                       .).(~..)( s
p

x
p

HH TARATR ττ
∆

=  

Hence, 
(36)                                 ).(~.)( s

p
x
p

HURUR ττ =  

where matrix )(x
p τR is called orthogonal correlation matrix. 

    Since U  is unitary and )(~ s
p τR  is diagonal, equation 

(36) states that orthogonal correlation matrix )(x
p τR  is 

diagonalized by the unitary transformation U (unitary 
diagonalization). In other words unitary matrix U can be 
specified by unitary diagonalizing of orthogonal correlation 
matrix )(x

p τR  for some lag  0≠τ . 

     
C. Computing A  and )(ts  
 
After determination of a unique unitary matrix U , A  

can be computed from  .1 UTA −= , and consequently the 
source signals are estimated as  

(37).                                                                                   (
1

( )) xAs tt
−=  

It is important to note that for computing )(ts ,  we use 
measured data  ( )x t  (not  (

~
)x t ), so there isn’t any 

information loss. 

V. SIMULATION  RESULTS 
In this section, the performance of the proposed method is 

investigated via computer simulation results. The data (mecg 
and fecg signals) are from [8]. 

    For evaluate the approach, the following performance 
index (PI) is introduced, 
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where
F

 .   is the Frobenius norm. 
    Two experiments we performed and compared: without 

pre-separation process (experiment #1) and with proposed 
pre-separation process (experiment #2). The experiments 
were executed under noise free and SNR=3,5,8,10 (dB) 
conditions for various number of correlation matrices used 
in JD algorithm. Some results are illustrated in the following 
Figures. 

    Almost in all figures, better performance of proposed 
algorithm (experiment #2) is evident. In figures 3 and 4, it is 
obvious that the performances of two experiments become 
better as the number of the jointly diagonalized correlation 
matrices is increased. Figures 5 and 6, show improvement in 
performance by increasing SNR.  

VI.  CONCLUSION 
In this paper, an approach for separation of MECG and 

FECG applying BSS method in cases where desired signals 
are correlated, is introduced without additional assumptions 
on signal or mixing matrix structures.  

    An important step of this BSS algorithm is a pre-
separation procedure where based on Wold decomposition 
principle, the information of predictable part of source 
signals (i.e. uncorrelated parts of predictable signals) is 
derived. The diagonal structure of the correlation matrix of 
this parts is essential for next step of algorithm where using 
second-order based method and JD technique, separation 

process is completed by estimating Â  and recovering )(ˆ ts . 
Simulation results show effectiveness of algorithm. 
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  Fig. 1. Signal Samples: (a) mecg, (b) fecg, (c) mixed signal: x1  

(c) mixed signal: x2 
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 Fig. 2. Signal Samples: (a) extracted signal s1from Experiment #1, 
(b) extracted signal s2 from Experiment  #1, (c) extracted signal s1 
from Experiment  #2, (d) extracted signal s2 from Experiment#2 
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Fig.3. Performance versus number of JD correlation matrices:  
[ Noise Free] 
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Fig.4. Performance versus number of JD correlation 
matrices:[SNR=3 dB] 
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Fig. 5. Performance versus SNR  for Experiment  #1: 
[K(No. of JD correlation Mat.)=2,4,6] 
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Fig. 6. Performance versus SNR  for Experiment  #2: 
[K(No. of JD correlation Mat.)=2,4,6] 

 


