
 
 

 

  

Abstract— The forward problem in Electrical Impedance 
Tomography (EIT) is the one of recovering the coefficients of a 
large sparse and positive definite matrix, obtained after 
discretization of a partial differential equation. The problem is 
said to be ill-conditioned which, amongst others, reflects a very 
slow convergence speed for the solution. Preconditioning the 
forward problem using incomplete Cholesky factorisation is the 
natural approach to solving the problem efficiently, having as a 
main drawback that its calculation is not always stable. Our 
work proposes a block adaptive preconditioning method which 
takes the advantage of the standard structure of the coefficients 
matrix to deliver a better conditioned system, yielding to a 
stable and fast computation of the preconditioning matrix for 
an efficient solution. Numerical results demonstrate the 
effectiveness of our proposed approach. 

I. INTRODUCTION 
lectrical Impedance Tomography (EIT) is a relatively 
new and promising imaging modality, already used in 

industrial applications that can be extensively used for 
monitoring in various medical applications. In a similar way 
to many other physical phenomena that are described by a 
partial differential equation, a set of equations is obtained as 
long as the domain is discretized. By transforming the 
equations into a standard matrix form, Ax b= , a large, 
sparse and (mainly) positive definite matrix is derived, 
called the coefficients or sensitivity matrix, often 
characterized by a very high condition number [1]. Hence, a 
form of preconditioning is needed to transform the original 
system of equations, in order to obtain a fast convergence 
and an efficient solution. However, as the scale of the 
system becomes larger (i.e., finer discretization) the 
convergence speed becomes a very crucial factor for many 
applications.  
 In this paper, we employ a preconditioning scheme initially 
introduced in [2], [3] to derive a better-conditioned system 
for the forward problem in EIT. In the next section, a brief 
introduction to EIT is given, with emphasis on the structure 
of the coefficients matrix. Next, in section three, standard 
preconditioning techniques are introduced with respect to 
incomplete Cholesky factorisation, while section four 
describes the proposed block adaptive preconditioner. 
Numerical simulations in section five are based on a 3D 
 

Manuscript received June 27, 2001. This work was supported in part by 
the Greek State Scholarships Foundation (IKY).  

P. A. Kantartzis and P. Liatsis are with the School of Engineering and 
Mathematical Sciences, City University, Northampton Square, EC1V 0HB, 
UK (+44 207040 3886; fax: +44 207040 8568; e-mail: p.kantartzis@ 
city.ac.uk) 

model consisting of 3262 first-order tetrahedral elements, 
originally derived for the application of monitoring 
dysphagia, a swallowing abnormality. 

 

II. PROBLEM FORMULATION 
In EIT, the internal conductivity structure of a body is 

reconstructed when electrodes are placed along the 
periphery of an object and current patterns are applied to 
some of them, while the rest are collecting the 
corresponding measurements. The imaging capabilities of 
EIT are based on the knowledge of a finite element model 
and, in general, in the a-priori knowledge about the solution. 
Thus, for a conductive volume of fixed boundaries and an 
initial conductivity distribution, the forward problem 
requires the calculation of the potential distribution inside 
the volume from measurements on the boundaries. The 
problem is mainly solved numerically than analytically and 
in particular with the use of Finite Elements Methods 
(FEM). The mathematical model that is used to solve the 
problem is based on a simplified version of the Maxwell’s 
equations engaged with the complete electrode model [4]. 
Using finite elements and according to the complete 
electrode model, the coefficients matrix can be assembled 
and structured as follows [5] 
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which eventually describes a linear system of equations of 
the form Ax b= , where ,in general, the compartment A11, 
refers to the problem formulation with natural boundary 
conditions, whereas compartments A12, A21 and A22 
superimpose and form the boundary conditions under the 
complete electrode model conditions. A sparse plot of the 
coefficient matrix is shown in Fig. 1. 

III. PRECONDITIONING 
In general, preconditioning is a technique for improving 

the condition number of a matrix. Assume that M  is a 
symmetric positive definite matrix that approximates the 
coefficient matrix A  however is easier to invert. In the 
general case, one can solve a problem of the form Ax b=  
indirectly by solving  

 1 1M Ax M b− −=  (2) 
As, A  is not well-conditioned, the goal is to achieve a 

condition numberκ  such that 1( ) ( )M A Aκ κ−  or in other 
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words, the eigenvalues of 1( )M A−   to be better clustered in 
order to achieve a faster convergence rate for the forward 
problem, than those of A .  Then, solve Eq. (2) iteratively 
rather than the original equation.  
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Fig.1 Structure of Coefficient matrix where the orange, blue, pink and 

green shaded regions corresponds to A11, A12, A21 and A22 compartments 
respectively.  

 
In the general case, the main drawback when 

preconditioning is that 1( )M A−  is neither generally 
symmetric nor positive definite even when M  and A  are. 
However, this difficulty can be overcome by considering 
that every positive definite symmetric matrix M can be (not 
uniquely) decomposed, using, for instance, complete or 
incomplete Cholesky factorization, as TEE M= and hence 
transforming the original forward problem into 

 1 1TE AE x E b− − −=  (3) 
where Tx E x= .  

Eq. (3) is initially solved for x  and then for x . As 
1 TE AE− −  is symmetric and positive definite, it can be 

efficiently solved using Conjugate Gradient (CG) [6]. 
A good measure of the effectiveness of a preconditioner is 
determined by the condition number of 1( )M A−  and hence 
the initial problem is restated as finding a preconditioning 
scheme which better approximates the system matrix A in 
order to improve convergence. The ideal preconditioner is 
M A= , as 1( )M A−  has a condition number of one, while 
the simplest preconditioner is a diagonal matrix, whose 
diagonal entries are identical to those of A , as it is quite 
trivial to invert. However, it is often an average 
performance preconditioner. 
On the other hand, the most practical and popular selection 
is the incomplete Cholesky preconditioner [7], defined for 
the coefficients matrix as TA LL= , where L  is a lower 
triangular matrix for Cholesky factorization and TA LL= is 
the incomplete Cholesky factorisation, where little or no fill 
is required. Unfortunately, incomplete Cholesky 
factorization is not always stable and may not deliver the 
fastest approximation for the system matrix, in terms of the 
implementation efficiency for large scale applications. If, 

for instance, the factorization fails due to pivot breakdown, 
a global diagonal shift should be applied to A  prior to 
reattempting it. Further, L may be restricted to have the 
same pattern of non-zero elements as A , where the other 
elements of L  are thrown away. 

IV. ADAPTIVE  PRECONDITIONING 
An attractive feature for selecting an adaptive 

preconditioner is the idea of subspace invariance in order to 
deflate the eigenvalues of the system matrix associated with 
this subspace, resulting in a more compact eigenvalue 
distribution and thus a better convergence rate. The 
drawback when using this approach is that in real 
applications, the construction of such subspaces can be 
rather costly. Let the following block triangular 
preconditioner be defined as [3] 
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where S  is an approximattion to the Shur complement 
1

22 21 11 12S A A A A−= −  [8]. The proposed preconditioner can 
be easily computed as blocks 11A , 12A  are already pre-
calculated to form the system matrix. We assume that the 
Shur complement can be easily calculated if an efficient 
solver for the inversion of 1

11A−  is employed and hence 
calculation of rP   reduces to a trivial task. 

V. SIMULATION OVERVIEW 
One of the challenging applications in EIT apart from 

cancer tumour and brain activity detection is monitoring of 
Dysphagia, a swallowing abnormality usually followed after 
stroke. Thus, consider a simplified mesh model of isotropic 
conductivity, which demonstrates the geometry of the given 
application, i.e., the human neck. The mesh is generated 
with the use of NETGEN, an open source free element 
discretization software under the Lesser General Public 
License (LGPL), while the calculations of the coefficients 
matrix as well as the reconstructed images were made with 
the use of EIDORS software [9].  

Current patterns are injected to the body and a set of 
measurements is then obtained, given the different electrode 
configurations, yielding to a subset of linearly independent 
measurements. The calculated coefficients matrix has a 
condition number of 2.4732 510⋅ . Table 1 shows the effect 
of preconditioning on the condition number, which is 
reduced to 1.5489 510⋅ , when incomplete Cholesky 
preconditioning is used. 

Moreover, the proposed adaptive preconditiong scheme 
drastically reduces the condition number to 1.3691 and 
delivers a very compact cluster for the singular values, as 
shown in semi-logarithimic scale in Fig. 3. 
 

 

                           

 
 



 
 

 

 
Fig. 2 A conical mesh consisting of 32562 first order tetrahedral elements 
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Fig. 3 Singular values plot for different preconditioning schemes 

 
As shown in Fig.3, block preconditioning results in a 

much better conditioned matrix and hence, in a faster 
iterative solution. The simulated inhomogeneities obtained 
when the proposed preconditioning scheme is applied to the 
forward problem are shown in the first and third columns in 
Fig. 4, whereas the reconstructed ones, using the default 
EIDORS regularized solution based on the face smoothing 
solver, in the second and fourth columns, respectively. 

VI. CONCLUSIONS 
The forward problem in EIT is hindered by the high 

condition number of the coefficients matrix, leading to a 
slow convergence rate which, in particular, in large scale 
applications becomes a crucial factor. A preconditioning 
scheme was presented along with numerical results to 
dramatically improve the performance of the forward 
problem and result in drastically reduced condition number 
for the coefficient matrix, under the assumption that the 
conductivity is real. Future work in this direction suggests 
evaluation of the proposed scheme amongst different solvers 

to derive an effective approach for the solution of the 
forward problem in EIT for both real and complex 
admittivities. With regard to the specific application, this is 
the first time, to our knowledge, that a fine 3D model 
towards monitoring of Dysphagia is presented. 

 

Level 0.01 Level 0.01 Level 0.063 Level 0.063

Level 0.12 Level 0.12 Level 0.17 Level 0.17

Level 0.22 Level 0.22 Level 0.28 Level 0.28

Level 0.33 Level 0.33 Level 0.38 Level 0.38

Level 0.44 Level 0.44 Level 0.49 Level 0.49

 
Fig. 4 Simulated and reconstructed images in first, third and second, fourth,  
columns, respectively.  
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